
16 EXPLORER  DECEMBER 2021By SATINDER CHOPRA, KURT MARFURT, RENJUN WEN and RONGFENG ZHANG

Faults play a significant role in the 
evolution of sedimentary basins, in 
the migration and accumulation of 

hydrocarbons, and in forming seals and 
conduits within a reservoir. Faults may 
also pose a risk in loosing drilling mud or 
creating difficulties with the drill bit. As 
we look beyond hydrocarbon exploration 
and production, fault modification of 
the subsurface plumbing will impact the 
production and reinjection of geothermal 
fluids and the integrity of carbon capture 
and storage reservoirs. Fault interpretation 
on seismic data has always been a 
laborious task, especially for large 3-D 
seismic volumes. Whereas horizon 
autopicking has advanced significantly 
during the past three decades, automated 
seismic fault interpretation lags behind. 
Fortunately, recent applications of artificial 
intelligence (deep learning) processes 
for identifying faults provide significant 
promise for the future. In this article, we 
demonstrate one such application and find 
that it compares favorably with an earlier 
application of fault likelihood attribute, 
discussed in the May 2021 installment of 
Geophysical Corner. We begin the article 
with a clarification of the term usage and 
then go on to discuss the application itself.

Artificial intelligence, Machine Learning 
and Deep Learning

Every day we hear and read about how 
artificial intelligence is changing our lives, 
from the promise of self-driving cars to the 
fear of heavy-handed intervention in social 
media. Discussions on AI use terms such 
as “machine learning,” “deep learning” and 
others, which we address in figure 1. 

The largest (white) circle indicates AI, 
a term defined by Claude Shannon at Bell 
labs and other computer scientists in 1965, 
who saw a future in which computers could 
be constructed to think like humans. AI 
reappeared in the 1970s and ‘90s with only 
limited success and acceptance. During 
the past 45 years, the speed of computer 
chips has increased while the cost has 
decreased by several orders of magnitude. 
Parallelization has evolved from eight 
processors on a Cray supercomputer to 
1,024 processors on your home computer 
desktop graphics card. With these 
advances, AI has come back, this time to 
stay and flourish. Competitions held over 
the last two decades – such as the 1997 
match between chess champion Gary 
Kasporov and the IBM computer Deep Blue, 
followed by Google’s DeepMind AlphaGo 
program’s defeat of the world’s top ‘Go’ 
player in 2016 – have lent credence and 

support to the AI movement.
Machine learning, or ML, shown as 

the pink circle in figure 1, is a subset of AI 
and can be defined as an algorithm that 
can analyze input and output data, learn 
steps that connect the two, and then use 
those findings to make predictions from 
data it has not seen before. There are 
many types of ML, one of which is artificial 
neural networks built of one or two layers 
of neurons that multiply and add (that 
is, convolve) the input data and pass the 
results through a nonlinear activation step 
that scales and/or thresholds the results. 
In this case, the mathematical objective 
is to determine the unknown weights that 
need to be used in the multiplications 
and additions to replicate the known 
output training data from the known input 
training data. The yellow circle in figure 

1 shows deep learning, a subset of ML 
that makes use of multiple (for example, 
20 or more) layers of neurons, to go deep 
into the data to learn and make more 
difficult predictions. Because there are 
more unknown weights, deep learning 
needs more training data than the simpler 
“shallow” neural networks. Thus, Facebook 
observing one’s past behavior, predicting 
interests, comparing to tens of millions 
of other subscribers, and recommending 
articles and notifications, should not come 
as a surprise. Similarly, when we observe 
Amazon recommending “you might also 
like” products, and Netflix recommending 
a movie, we know in the background that 
DL algorithms are at work. Deep learning 
convolutional neural networks are being 
used for advanced computer vision 
applications in robotics, drone surveillance, 

medical image recognition, identification 
of tissue texture, diagnosis and other 
applications. 

In seismic data analysis, the sizes of 
the data volumes have been increasing 
over the last decade, and the challenge has 
been to make sense of all those gigabytes, 
terabytes and petabytes of data. Besides 
its video or audio applications in other 
domains, ML has been applied in oil and 
gas exploration for different tasks such 
as horizon picking, fault interpretation, 
facies classification and others in seismic 
interpretation, and first break picking, 
velocity analysis, denoising, interpolation 
and others in seismic processing.
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Figure 1: Embedded circles showing the relationship 
between artificial intelligence, machine learning and 
deep learning.

Figure 2: Schematic diagram of the U-Net 
shape architecture used by the CNN model. 
Adapted from Ramos and Bedle, 2021.

Figure 3: Segments of (a) synthetic seismic section generated using an impedance model and a 30 hertz Ricker wavelet, (b) the equivalent fault label section from a 3-D fault 
model, and (c) the equivalent synthetic seismic section with the addition of the faults in (b).
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AI Fault Interpretation on Seismic Data

Seismic fault detection is an important, 
though tedious and time-consuming task 
in seismic interpretation. Until recently, 
the discontinuities observed on seismic 
data or highlighted by attributes have 
been handpicked by seismic interpreters. 
Consequently, the results are dependent 
on the individual interpreter, with different 
interpreters exhibiting different levels of 
expertise and/or bias. To alleviate this 
human-intensive task, several promising 
tools have been developed for automatic 
fault extraction. Although they do not 
completely do away with human bias, they 
can capture many types of faults seen on 
seismic data.

Recent machine learning applications 
for fault interpretation are described. 
The description and application of DL 
neural networks to geoscientific tasks 
have been discussed before in articles 
published in the Geophysical Corner of 
the Oct. 2018 and Aug. 2021 issues of 
the EXPLORER. The CNN is trained to 
interpret different types of faults on the 
input seismic data (with faults picked by 
an interpreter) or synthetic data with faults, 
in a supervised learning mode, and then 
the trained network is applied to the input 
seismic data so that all such faults can 
be detected. The results obtained from 
such applications show improved fault 
interpretation compared with equivalent 
results from seismic coherence, or fault 
likelihood (probability-based) processes.

Typically, CNNs utilize a U-Net 
architecture comprising two symmetrical 
arms arranged in the shape of the English 
alphabet ‘U’ as shown in figure 2, and 
consist of a number of successive layers, 
which through sharing of parameters 
enhance the resolution of the output. 
The left arm, called the “downsampling 
wing,” is a convolution network wherein 
repeated application of convolutions takes 
place to extract different features from 
the previous inputs. Each convolution 
layer is followed by a layer that serves to 
nonlinearly express the input to its output, 
and another layer that extracts the rough 
structure again nonlinearly reducing the 
feature sampling so that the number of 
parameters gets reduced, so also the 
computation time. In some sense, the 
information contained in a 128x128x128 
block of seismic amplitude data is 
represented by a smaller 64x64x64 block 
of CNN “attributes.” Then this 64x64x64 
block is further reduced to a 32x32x32 
block of different “attributes.” In this 
manner, a reduced data volume represents 
the 3-D image, where significant features 
are selected, and less significant features 
discarded as per some thresholds. The 
right arm, called the “upsampling wing,” 
also uses a layered process, such as 
deconvolution (sometimes also called 
“transpose convolution”), as well as 
concatenation and feature mapping to 
reconstruct the image to its original size. 

By adopting a repeated combination 
of such convolutions and associated 
operations, the algorithm attempts to find 
the unknown weights for each step that at 
the end predict the known training data (a 
suite of fault surfaces mapped to voxels) 
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Figure 4:  An inline section through the (a) original fault-likelihood, (b) AI fault-probability, and (c) thinned AI fault-probability attribute volumes. 
Data courtesy of New Zealand Petroleum and Minerals.

Figure 5:  Equivalent time slices at 1,088 milliseconds 
from (a) fault-likelihood attribute, (b) AI fault-probability 
attribute, and (c) AI fault-probability attribute with 
thinning, volumes. One obvious difference between 
the fault-likelihood attribute and the newer AI fault 
probability is that the polygonal patterns seen on the 
time slice has gone away and is now replaced with the 
lineament pattern which seems more geological. Data 
courtesy of New Zealand Petroleum and Minerals.

See GeoCorner page 21 u
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from the corresponding known input 
seismic amplitude data. At present, there 
are two different types of training data 
used – human interpreted fault surfaces 
from real seismic data and synthetic 
fault surfaces that when combined with a 
sufficient number of faulted horizons allow 
the construction of the corresponding 
synthetic seismic amplitude data. 

Once the model parameters are 
determined, the next step is to validate the 
performance of CNN on a blind dataset not 
used in the training; if the results are found 
to be satisfactory, the CNN is run on the 
target seismic data volume.

Application to Real Seismic Data Volume 

We carry out the application of CNN on 

the Opunake 3-D seismic survey, located 
in the southeastern part of offshore 
Taranaki Basin, New Zealand. As the 
seismic data quality was found to be better 
in the shallower part than the deeper, 
the data were preconditioned with the 
application of structure-oriented filtering. 
Some selected inlines and crosslines 
from the seismic data volume can be 
put through manual fault interpretation, 
which served as the training dataset for 
the AI fault interpretation. Alternatively, 
synthetic models can be generated for the 
configuration of faults seen on the input 
seismic data volume. Figure 3 shows 
how such a model is generated using a 
subsurface impedance model and a 30 
hertz Ricker wavelet, both without and with 
the fault model. The synthetic fault models 
so generated can be used for training in the 
CNN application.

Figure 4 shows a comparison of 
corendered inline seismic section with 
the fault-likelihood attribute (figure 4a), 

a process discussed in the May 2021 
Geophysical Corner, and with the fault 
probability attribute derived from AI fault 
interpretation generated using a synthetic 
fault model for training (figure 4b). 
This data volume is then put through a 
“thinning” or skeletonizing process, which 
is essentially a binary representation of 
the faults, a “1” representing a fault and “0,” 
no fault. The equivalent corendered inline 
section through this volume is shown in 
figure 4c. Notice, the excessive lineament 
detail seen in figure 4a, which a seismic 
interpreter might find overwhelming, looks 
more geological in figures 4b and c.  

A similar time slice comparison is 
shown in figure 5, wherefrom a similar 
conclusion can be arrived at.

For training, as stated above usually 
a limited number of inlines and crossline 
from a 3-D seismic volume are used, 
and it is expected that the CNN model 
generated therefrom can predict or carry 
out automated fault interpretation on the 

input seismic data volume satisfactorily. 
However, many times this results in 
inaccurate predictions. Such a situation is 
overcome by using an interesting process 
called “transfer learning,” which is an 
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Figure 6:  An inline vertical section through the AI fault-probability attribute volume generated using an interactive transfer learning process. Although a few smaller faults are 
missed (yellow arrows) we see few false positive fault anomalies in this image. Data courtesy of New Zealand Petroleum and Minerals.
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