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oil-in-place or 1.7 to 2.7 TCF of gas (Uruski and Clark, 2009). 
Although drilling in New Zealand is currently on hold as part 
of their effort to mitigate climate change, the release of the data 
to the public has resulted in the Taranaki Basin being one of the 
most widely studied basins in the world.

When 3D seismic data image the complex internal geometries 
of channel systems as they do in this survey, they provide an 
important resource for studying channel fills and their associated 
lateral distribution patterns. Li et al. (2017) demonstrated the 
application of sweetness and coherence attributes interpreted in 
a seismic geomorphology context and facilitated the geological 
interpretation of the Late Miocene deepwater channel complex 
as seen on the Romney 3D seismic volume. This application led 
to the observation of four channel elements, namely, point bars, 
migration of channel meander loops, channel erosion and cutting, 
and avulsion. We showcase our attempts at characterization 
of this deepwater channel complex in terms of seismic attrib-
ute applications, specifically using the unsupervised machine 
learning seismic facies classification techniques. Features such 
as levees, channel-fill and overbank deposits appear are more 
clearly defined on composite seismic attribute displays than on 
any single attribute by itself. In this study we attempt at providing 

Introduction
Deepwater turbidite reservoirs hold some of the largest petroleum 
reservoirs and thus are important exploration targets. Deepwater 
turbidite reservoirs occur in the more distal reaches of the system 
where the suspended sediments are often very well sorted by 
their grain size, resulting in high porosity. In the absence of well 
control, prediction of lithology is based on our understanding of 
the environment of deposition. By identifying and mapping the 
diverse architectural elements of the turbidite system and placing 
them within the correct geologic framework, a skilled interpreter 
can predict which components of the system are more likely sand 
or shale prone. Seismic data and seismic attributes also provide 
insight into the connectivity or compartmentalization of different 
parts of the reservoir (e.g., Deptuck, 2003; Braccini et al., 2011; 
Reijenstein et al., 2011) which can be used to estimate the number 
of wells needed to drain the reservoir.

The deepwater Taranaki Basin located off the northwest coast 
of New Zealand (Figure 1) is covered by several high-quality 3D 
seismic surveys that have been made available to the public by 
the New Zealand Petroleum Ministry. The Romney prospect in 
this basin has a closure area of 200 km2 in 1600 m of water depth 
and it has been estimated to contain 1100-1650 million barrels of 
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this well provides critical lithologic information. The lack of 
additional well control precludes a quantitative interpretation; for 
this reason, our interpretation is based on the seismic response 
to the subsurface and our understanding of geologic processes.

a detailed description of the turbidite facies and their geometry to 
facilitate a better understanding of the channel architecture.

Only one well is drilled in the area and falls over the seismic 
volume but does not intersect the Miocene channel. However, 

Figure 1 Location map showing the Deepwater 
Taranaki Basin lying off the northwest coast of New 
Zealand. The white rectangle represents the study 
area. (Channel outline adapted after Grahame, 2015) 
Map courtesy Google Earth Pro.

Figure 2 Stratigraphy of the Taranaki Basin, New 
Zealand. (After Strogen et al., 2012).
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Available seismic data
The available seismic data were the Romney 3D survey acquired by 
Anadarko New Zealand in 2011 made publicly available by New 
Zealand Petroleum and Minerals. We analyse a 700 km2 subset 
that falls in water depths exceeding 1000 m. The bin size for the 
data is 12.5 x 25 m, with a sample interval of 4 ms. Although the 
Romney-1 exploration well was drilled to a depth of 4575 m below 
sea surface, it does not intersect the Miocene deepwater channel, 
but does provide useful lithology information. Figure 3 shows that 
the Miocene strata in Romney-1 includes claystone, siltstone, and 
limestone. SEG polarity convention has been used for seismic data 
display, i.e., a positive reflection coefficient represents a peak. These 
lithoelements when tied to the seismic data exhibit strong amplitude, 
high continuity reflections for limestone to mudstone interfaces, and 
weaker amplitudes internal to the mudstone deposits. Bright seismic 
amplitudes seen within the channel are associated with shingled 
reflections indicating sandy fill during channel migration.

Conditioning seismic data for attribute analysis
Traditional seismic data are seen to preserve information with a 
frequency content going up to 50 or 60 Hz at the high end of the 
bandwidth. While such bandwidths may be acceptable for thicker 
conventional reservoirs, they could lack the needed resolution and 
be unacceptable for deepwater turbidite reservoirs. The advance-
ments in seismic data acquisition and processing, coupled with 
computer capacities and speeds, provide cost-effective solutions for 
such objectives. For a decade-old vintage seismic dataset we need to 
apply an amplitude-friendly poststack spectral balancing procedure 
to enhance the vertical and lateral resolution. The spectral balancing 
procedure of choice was the method first discussed by Marfurt and 
Matos (2014), also demonstrated by Chopra and Marfurt (2016).

In this method, data are first decomposed into time-frequency 
spectral components. Then the power of the spectral magnitude, 

 is averaged over all the traces (j = 1, …K) in 
the data volume spatially and in the given time window, which 
yields a smoothed average power spectrum, . Next, we 
compute the peak of the average power spectrum at each time 
sample, . Both the average spectral 

Geologic background
The deepwater Taranaki Basin developed as a result of mul-
tiple tectonic cycles that included the Mesozoic rifting, Late 
Cretaceous and Paleogene subsidence associated with seafloor 
spreading, and large-scale Neogene channel systems which 
transported excessive amounts of sediments into deeper water 
areas. Figure 2 shows the stratigraphy of the Taranaki Basin and 
neighbouring areas.

The existing evidence and basin models calibrated to the 
adjacent shallower water Taranaki Basin wells suggest that 
the expulsion of petroleum from the deepest parts of the basin 
began in Late Cretaceous and continues even today (Sherwood, 
2002). Consequently, rocks older than 100 Ma are considered to 
be the geologic basement. The Gondwana breakup from Early 
to Late Cretaceous initiated the development in the basement 
that started with the opening of the Tasman Sea associated with 
the subduction of the Pacific plate along the eastern Gond-
wana margin. Coal-rich formations were deposited from the 
Cretaceous to the Paleogene in shallow and non-marine envi-
ronments, which represent the source rocks in Taranaki Basin 
(Uruski et al., 2003). The Late Cretaceous to Early Pliocene 
periods also saw the deposition of sandstone formations because 
of widespread marine transgression, which was followed by 
marine silts and muds. The marine shales deposited during 
Early Cretaceous, and Paleocene periods provide additional 
source rocks (Strogen et al., 2012). The mudstone deposition 
took place from Cretaceous to Eocene (Turi Formation) as well 
as during the Miocene (Manganui Formation) period. These 
mudstones and the Oligocene to Miocene Tikorangi Formation 
carbonates (when not fractured) are believed to provide a seal 
to the source rocks. 

Significant uplift of the New Zealand North Island land-
mass occurred throughout Miocene, and coupled with cli-
mate-driven erosion, led to the development of the Neogene 
major submarine system that transported large volumes of 
sediment from onshore areas through the deepwater Taranaki 
Basin into the southern margins of the New Caledonia Basin  
(Figure 1).

Figure 3 Line AA’ through the seismic amplitude volume 
showing a deepwater channel. A gamma ray curve has 
been overlaid on the section at the location of Romney-1 
well. The limestone formations exhibit high-amplitude 
continuous reflections, whereas the claystone and 
siltstone formations exhibit weaker amplitudes. The 
moderate amplitude shingled reflections within the 
channel probably represent more sand-rich facies.
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The alternative coherence algorithms vary in how they 
handle lateral variations in amplitude, phase, and waveform, and 
thus have different sensitivities to geology, spectral bandwidth, 
and seismic noise. Whatever the algorithm choice, coherence 
is best computed along structural dip. A covariance matrix is 
then constructed from the selected samples and solved, i.e., the 
eigenvalues and eigenvectors are determined. The ratio of the 
first eigenvalue (by definition the largest) to the sum of all the 
eigenvalues is the value of the eigenstructure coherence at the 
sample at the centre of the unit cube. The analysis window is 
then shifted by one sample at a time in the inline, crossline and 
time directions, and the above process repeated. The result is a 
coherence volume, which is ready for interpretation.

The energy ratio-based coherence algorithm (Chopra and 
Marfurt, 2008) is a generalization of Gersztenkorn and Marfurt’s 
(1999) eigenstructure-based coherence computation, where the 
original trace and its Hilbert transform are used to construct the 
covariance matrix, thereby minimizing artifacts at zero crossings, 
and thereby providing the ability to use shorter analysis windows 
resulting in reduced stratigraphic mixing. Coherence run on band-
pass filtered or spectral voice components often delineate edges 
at or near the tuning frequency of a given formation (Chopra 
and Marfurt, 2019a, 2019b). In general, shorter, more vertically 
limited faults and channel edges are often better delineated at 
higher frequencies, while through-going faults are often better 
delineated at lower frequencies.

In addition to computing a covariance matrix from each band-
passed filtered version of the data and then computing coherence 
for each one, we can also add the covariance matrices and compute 
coherence from its sum, giving rise to multispectral coherence 
computation (Li and Liu, 2014; Chopra and Marfurt, 2018).

We demonstrate the application of broadband and multispec-
tral coherence on the input and frequency-balanced seismic 

magnitude and the peak of the average power spectrum are used 
to design a single time-varying spectral-balancing operator that is 
applied to each and every trace in the data:

� (1)

where ε is the prewhitening parameter. A conservative value would 
be ε = 0.04. For larger surveys in which the estimate of the average 
spectra is statistically more robust, one might use values of ε = 
0.01 in many cases, further broadening the spectrum. However, 
as with any filter, the interpreter needs to determine whether such 
aggressive spectral balancing introduces ringing in the data. Such 
spectral balancing is amplitude friendly because a single time-var-
ying wavelet is applied to the entire data volume.

Figure 4a and b shows a comparison of segments of seismic 
sections traversing the deepwater channel complex before and 
after frequency balancing, along with their frequency spectra. 
Notice the well-defined appearance of the reflections both outside 
and within the channel complex in Figure  4b as well as the 
flattened appearance of the frequency spectra as compared with 
the input seismic volume.

This data volume was then put through structure-oriented 
filtering and attribute computation. To bring out the advantage of 
frequency balancing and structure-oriented filtering, we compute 
relevant attributes on the data before and after the two data con-
ditioning processes and compare the results in the next section.

Coherence attribute
Encouraged with the higher-frequency content of the seismic 
data, we first generated the coherence attribute. Much has been 
written about this attribute and the usefulness of its application.

Figure 4 Line BB’ through the seismic amplitude volume and its frequency spectrum (a) before and (b) after spectral balancing resulting in a statistically flatter spectrum. 
Examining the spectrally balanced image, we notice a small channel inside the black box, greater resolution of thinner reflectors in the green box, and more clearly defined 
offsets across the faults in the cyan box. In contrast, the steeply dipping fault plane reflectors are more clearly delineated in the cyan box on the unbalanced data. These 
events exhibit a very low apparent vertical frequency and were reduced by spectral balancing.
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seen at different frequencies. Tuning is a function of the two-way 
travel time thickness, and thus depends not only on the thickness 
measured in metres, but also on lithology, porosity, and fluid 
content that affect the velocity. Temporally thick beds or features 
will be tuned and have relatively higher amplitudes at lower 
frequencies, while temporally thinner beds will be tuned and have 
relatively higher amplitudes at higher frequencies.

Spectral magnitude highlights features that are tuned, and 
the phase components enhance subtle faults and channel edges 
that can be used as input to subsequent seismic attribute analysis, 
such as coherence. There are different methods for computing 
spectral decomposition, namely, the traditional short-window 
discrete Fourier transform (Partyka et al., 1999), continuous 
wavelet transform (Sinha et al., 2005), S-transform (Stock-
well et al.,1996), and matching pursuit (Mallat and Zhang, 
1993) methods. In this work we employ the matching pur-
suit method, which is known for producing high-resolution  
attributes.

data volumes. Figure  5 shows a comparison of time slices at  
t=3.18 s from both coherence volumes. The channel features seen 
on the multispectral coherence display are well defined overall and 
therefore very clearly seen and exhibit higher signal-to-noise ratio. 
The best practice for stratigraphic objectives is to analyse stratal or 
even geochronostratigraphic slices through the data. In our example 
the structural dip is low such that the stratal slices are almost parallel 
to the time slices at the level of the channel. For this reason, we use 
time slice displays to minimize any bias due to errors in the horizon 
picking. The chair display shown in Figure 6 shows the seismic sig-
nature of the channel complex at different locations along its length.

Spectral decomposition
Spectral decomposition is a well-established tool that helps in 
the analysis of subtle stratigraphic plays and fractured reservoirs. 
It decomposes the broadband seismic data into individual nar-
row-band frequency components that fall within the measured 
seismic bandwidth, so that the same subsurface geology can be 

Figure 5 Time slice at t=3.18 s through the (a) broadband and (b) multispectral coherence volumes. Many of the linear artifacts aligned with the inline direction are 
suppressed in the multispectral coherence volume. In contrast, although the strong channels features are darker in the multispectral coherence, they are otherwise nearly 
identical when animated. The time level of the displayed slices on the seismic section in Figure 3 is indicated with a blue dashed line.

Figure 6 A chair display showing a vertical seismic 
section intersecting a time slice through the multispectral 
coherence volume. The coherence time slice more clearly 
shows the relation between the channel elements seen 
on the vertical section, where the meandering orange 
channel cuts through the earlier, straighter yellow 
channel. If we hypothesize that greater tortuosity (the 
ratio of channel length to the straight-line distance to the 
endpoints) indicates slower flow rates and finer sediment 
deposition, we have the risk of a shale-rich orange channel 
compartmentalizing the sandier yellow channel.
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and 50 Hz without and with spectral balancing. Not surprisingly, 
Figure 8a shows mostly red, yellow, and green; Figure 8b shows 
cyan and blue as well. Most commercial workstation software 
will allow the interpreter to interactively scale the value of 
each spectral component, thereby approximating the spectral 
balancing of equation 1, but without the constraints of vertically 
smoothing the spectrum and adding a prewhitening factor, 
making the process quite subjective.

Changing the amplitude of a given spectral voice component 
(bandpass-filtered version of the data) for the entire survey has 
little impact on coherence, which is sensitive only to lateral 
changes in amplitude. However, because the different spectral 
components see the channel edges at different frequencies, coren-
dering the coherence computed at 25, 35, and 50 Hz provides a 
measure of the temporal thickness of a given edge (Figure 9).

The idea behind a matching pursuit algorithm is that the 
bandlimited seismic trace is composed as a superposition of a 
discrete number of source wavelets (sometimes called ‘atoms’). 
Each Morlet or Ricker wavelet used has a well-defined spectrum; 
thus, by finding the constituent wavelets that fit the data we also 
compute the spectra at each time sample. There are several ways 
of computing matching pursuit decomposition; here, we follow the 
Liu and Marfurt (2007) workflow, which is summarized in Figure 7.

Clearly, the imprint of the seismic source wavelet affects the 
spectral magnitude slices, overprinting any tuning effects. For 
this reason, a best practice is to spectrally flatten the data using 
a statistical method similar to that in equation 1, or a more deter-
ministic method such as spectral shaping using an estimate of 
the source wavelet obtained with the aid of well logs. Figure 8 
shows the corendered spectral magnitudes computed at 25, 35, 

Figure 7 The complex matching pursuit workflow. (After 
Liu and Marfurt, 2007).

Figure 8 Time slice at 3.18 s from RGB corendered 
spectral magnitude on (a) input seismic volume, and (b) 
on frequency-balanced seismic volume at 25 Hz, 35 Hz, 
and 50 Hz. Note the clear disposition and definition of 
the channel complex in (b).
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Sweetness attribute
Sweetness is a ‘meta-attribute’ (Radovich and Oliveros, 1998) or 
one computed from others, which in this case is the ratio of the 
envelope and the square root of the instantaneous frequency. In 
many Tertiary Basins, a clean sand embedded in a shale will exhibit 
high envelope and lower instantaneous frequency, and thus higher 
sweetness, than the surrounding shale-on-shale reflections.

Hart (2008) showed applications of sweetness attribute in 
imaging sand-filled channels from both deep-water and fluvi-
al-systems embedded in shale formations. This becomes possible 
in marine clastic settings where the shale-dominated intervals 
exhibit low amplitudes (small impedance contrast) and higher 
frequencies due to relatively closely spaced reflections, whereas 
sandy intervals such as channel fills and frontal splays in shales 
are associated with higher amplitudes (high impedance contrast) 
and lower frequencies (due to broad reflections). The sandstones 
correspond to high sweetness when the impedance contrast with 
the shale is high. Sweetness may not be useful for other litholo-
gies when the contrast is low.

If the data are not spectrally balanced, such as shown in the spec-
trum of Figure 4a, the range of the instantaneous frequency used in 
the sweetness attribute will be biased to the low end of the spectrum. 
In contrast, spectral balancing results in instantaneous frequency 
values that range from 10 to 60 Hz, thereby increasing the dynamic 
range, and hence lateral resolution of the sweetness attribute.

Figure 10 shows a comparison of time slices at 3.18 s 
through the sweetness attribute computed on the input seismic 
volume (Figure 10a) and the equivalent slice through sweetness 
computed on frequency-balanced seismic volume (Figure  10b). 
Both displays are shown corendered with coherence. Notice the 
better sweetness definition both within and outside the channel 
complex in Figure 10b.

Relative acoustic impedance
Relative acoustic impedance is computed by continuous integration 
of the original seismic trace with the subsequent application of 

Figure 9 Time slice at 3.18 s through the CMY corendered coherence volumes 
computed at 25 Hz (against cyan), 35 Hz (against magenta), and 50 Hz (against 
yellow). Coherence anomalies that are stronger at lower frequencies indicate 
thicker edges, while those stronger at higher frequencies indicate thinner edges. 
Coherence anomalies that are the same for all frequencies appear as black.

Figure 10 Time slices at t=3.18 s from sweetness 
attribute computed on (a) input seismic volume and 
the equivalent slice from sweetness computed on (b) 
frequency-balanced seismic volume. Both displays are 
shown corendered with coherence. Notice the better 
sweetness definition both within and outside the 
channel complex in (b).
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comparison of time slices at 3.18 s from total energy computed 
on the input seismic volume (Figure  12a) and the equivalent 
slice from total energy computed on frequency-balanced seismic 
volume (Figure 12b). Both displays are shown corendered with 
coherence. Notice the better total energy definition both within 
and outside the channel complex in Figure 12b.

Reflector convergence
We next consider the computation of a relatively less common 
volumetric attribute called reflector convergence, which is useful 
in the interpretation of angular unconformities. It is a measure 
of the change in reflector normal about a horizontal axis. This 
attribute can facilitate and quantity the use of seismic stratigraphic 
workflows to large 3D seismic  volumes.

Because of the distinct change in reflector dip and/or 
terminations, erosional unconformities and in particular angular 
unconformities are relatively easy to recognize on vertical seismic 

low-cut filter. The impedance transformation of seismic ampli-
tudes enables the transition from reflection interface to interval 
properties of the data, without the requirement of a low-frequency 
model. Figure  11 shows a comparison of time slices at t=3.18 s 
through relative impedance computed on the input seismic volume 
(Figure 11a) and the equivalent slice through relative impedance 
computed on frequency-balanced seismic volume (Figure  11b). 
Both displays are shown corendered with coherence. Notice the 
better relative impedance definition both within and outside the 
channel complex in Figure 11b.

Total energy
The total energy attribute helps to isolate low energy chaotic 
reflectors from higher energy seismic responses. It is computed 
by measuring the energy associated with the sum of eigenvalues 
computed from the covariance matrix of the windowed seismic 
traces (Gersztenkorn and Marfurt, 1999). Figure  12 shows a 

Figure 11 Time slices at 3.18 s from relative impedance 
attribute computed on (a) input seismic volume and the 
equivalent slice from relative impedance computed on 
(b) frequency-balanced seismic volume. Both displays 
are shown corendered with coherence. Notice the better 
sweetness definition both within and outside the channel 
complex in (b).

Figure 12 Time slices at 3.18 s from total energy attribute 
computed on (a) input seismic volume and the equivalent 
slice from total energy computed on (b) frequency-
balanced seismic volume. Both displays are shown 
corendered with coherence. Notice the better sweetness 
definition both within and outside the channel complex 
in (b).
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Figure 13 illustrates seismic stratigraphic patterns or ‘reflector 
convergence’ within a channel with and without levee/overbank 
deposits. Notice how the convergence shows up in colour (using 
the 2D colour wheel) as displayed to the right in green and 
magenta colours along the channel edges.

Figure 14 shows a comparison of time slices at t=3.18 s 
through reflector convergence computed on the input seismic 
volume (Figure  14a) and the equivalent slice through reflec-
tor convergence computed on frequency-balanced seismic 
volume (Figure  14b). Both displays are shown corendered 
with coherence. Notice the better reflector convergence 
definition both within and outside the channel complex in 
 Figure 14b.

In Figure 15 we show a segment of a vertical section from 
the seismic data volume depicting the main channel signature, 
and we try and correlate the individual signatures with the chan-
nel definition seen on the multispectral coherence time slice at 
t=3.18 s. This level is shown with a dotted line on the seismic 
display. Notice how the original channel position is marked 
with a black dashed outline and has been shown correlated with 
the channel definition on the coherence display. The gradual 
lateral migration of the channel can also be interpreted as shown 
with the red dashed lines on both the seismic and coherence 
displays. Similarly, the present-day position of the channel 
levees is shown with cyan dashed lines on both displays. Thus, 
the coherence attribute helps interpret the original position of 
the channel as well as its lateral migration up to the present-day 
position. In addition, the equivalent attribute vertical displays as 
labelled, corendered with the seismic amplitudes in grey scale, 
have been included in the display. The individual attributes 
pick up different features of the channel architecture, and we 
expect all such component features to come together when we 
churn through them in machine learning applications discussed  
next.

sections. Although low-coherence anomalies often appear on time 
slices where reflectors of conflicting dip intersect, these anoma-
lies take considerable skill to interpret. Barnes (2000) introduced 
an attribute that maps such unconformities volumetrically by 
computing the mean and standard deviation of the vector dip 
within local windows. Stratigraphic facies exhibiting parallelism 
have a small standard deviation, facies that pinch out may have 
a moderate standard deviation, and facies that are chaotic often 
have a high standard deviation.

Computing a vertical derivative of apparent dip along a 
user-defined azimuth, Barnes (2000) also computed the conver-
gence and divergence of reflections. As reflection divergence is 
characterized by increasing reflection dip, and likewise reflection 
convergence by decreasing reflection dip with depth, in 2D, 
converging reflectors exhibit a decrease in dip p with depth (dp/
dx < 0) while diverging reflectors exhibit an increase in p with 
depth (dp/dx > 0).

Marfurt and Rich (2010) built upon Barnes’ (2000) method 
by volumetrically computing the curl, Ψ, of the unit length vector 
perpendicular to the reflector, or unit normal, :

� (2)

where the unit normal vector has three components, , , and 
 and the circumflex indicates the unit normals along the x, y, 

and z axes.
Components of this curl vector perpendicular to the average 

(usually close to vertical) reflector normal, , measure reflector 
convergence North and East components, or alternatively reflec-
tor convergence azimuth and magnitude:

� (3)

Figure 13 Cartoons demonstrating convergence within a channel with or without levee/overbank deposits. (Interpretation courtesy: Supratik Sarkar) (After Chopra and 
Marfurt, 2013).
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family includes dimensionality reduction algorithms such as 
PCA and ICA (Chopra et al., 2018; Chopra and Marfurt, 2018) 
where N≥3 attribute volumes are represented by two or three 
component volumes. When plotted against a 2D or 3D colour 
bar, the interpreter may be able to identify clusters, but the 
algorithm output is a continuum of data projected onto the lower 
dimensional hyperplane. The second, unsupervised classifica-

Machine learning applications used for 
unsupervised seismic facies classification
Machine learning uses mathematical operations to learn from 
the similarities and differences in the provided data and 
make predictions. Besides the supervised and deep learning 
machine learning techniques, there are two broad families of 
unsupervised machine learning algorithms. The first algorithm 

Figure 14 Time slices at 3.18 s from reflector 
convergence attribute computed on (a) input seismic 
volume and the equivalent slice from reflector 
convergence computed on (b) frequency-balanced 
seismic volume. Both displays are shown corendered 
with coherence. Notice the better sweetness definition 
both within and outside the channel complex in (b).

Figure 15 (Middle) Time slice at 3.18 s from multispectral coherence volume shows the main channel architecture clearly. Vertical seismic sections from seismic data as well 
as the derived attribute volumes are shown above. The signature of the original position of the channel is shown on the vertical sections with a dashed outline (black on the 
seismic and white on the attribute volumes). How the original position of the channel migrates laterally, the channel accretion as well as the present-day channel position 
are marked on the coherence slice, and their seismic signatures are also pointed with the arrows. The attribute data are shown corendered, with the seismic amplitudes in 
grey scale using transparency setting the low values as transparent and high values opaque. For relative impedance, the values close to zero are set as transparent and the 
extreme values opaque as indicated.
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the plane, deforming it into a 2D surface called a manifold that 
better fits the data. After convergence, the N-dimensional data are 
projected onto this 2D surface and are in turn mapped against a 
2D plane or ‘latent’ (hidden) space defined by axes SOM-1 and 
SOM-2, in which the interpreter either explicitly defines clusters 
by drawing polygons, or implicitly defines clusters by plotting the 
results against a 2D colour bar. Matos et al., (2003, 2004, 2007) 
and Zhao et al. (2015) describe the details of the SOM method 
and demonstrate its application for seismic facies classification 
on data from different basins.

Figure 16 shows the equivalent time slice (t=3.18 s) to those 
shown earlier, extracted from the crossplot volume generated 
between the SOM-1 and SOM-2 volumes using a 2D colour 
bar shown alongside. Figure  16a shows the display for the 
SOM computation carried out when the input attributes were 
computed on the input seismic data volume were used, and 
Figure 16b displays the equivalent display when the attributes 
were computed on the frequency balanced seismic data. The 
features seen on the display in Figure 16b are better defined in 
terms of more colour separation and distinct definition than the 
ones seen in Figure 16a.

tion algorithm family attempts to explicitly cluster the data into 
a finite number of groups that in some metric ‘best represent’ 
the data provided. Two methods that fall under this category are 
the self-organizing mapping (SOM) and generative topographic 
mapping (GTM). In both algorithms the data are represented 
by neurons that lie on a deformed 2D or 3D manifold that 
fits the N-dimensional data where each attribute represents a 
dimension. In this manner, clusters that are near each other in 
N-dimensions will also be near each other when projected onto 
the deformed manifold. We show the application of both these 
methods to the Romney 3D seismic volume, on both the input 
and frequency balanced versions.

Self-organizing maps
Self-organizing mapping (SOM) is a technique that generates 
a seismic facies map from multiple seismic attributes, in an 
unsupervised manner. It defines its initial cluster centroids in 
an N-dimensional attribute data space and uses the first two 
eigenvectors of the covariance matrix to least-squares fit the data 
with a plane (Kohonen, 1982, 2001). Grid prototype vectors (also 
called neurons) defined in this plane, are attracted to data out of 

Figure 16 Time slices at 3.18 s from SOM1-versus-
SOM2 crossplot volume computed on (a) input 
seismic volume and the equivalent slice from SOM1-
versus-SOM2 crossplot volume computed on (b) 
frequency-balanced seismic volume. Both displays are 
shown corendered with coherence. Notice the better 
sweetness definition both within and outside the 
channel complex in (b) as indicated by block arrows.

Figure 17 Time slices at 3.18 s from GTM1-versus-
GTM2 crossplot volume computed on (a) input 
seismic volume and the equivalent slice from GTM1-
versus-GTM2 crossplot volume computed on (b) 
frequency-balanced seismic volume. Both displays are 
shown corendered with coherence. Notice the better 
sweetness definition both within and outside the 
channel complex in (b) as indicated by black arrows.
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or the mapping of faults and channel edges. Some attributes can 
be used to map both, with coherence being able to highlight the 
chaotic internal reflectivity or low signal-to-noise ratio of salt 
diapirs and karst collapse as well as stratigraphic and structural 
edges. Similarly, spectral magnitude components often exhibit low 
values near faults, either because the data are scattered or because 
the reflectivity of fault plane reflectors map is mapped to lower 
apparent frequencies. Reflector convergence can exhibit both the 
gentle thinning and thickening of sediments or the abrupt change in 
dip about angular unconformities and deeper part of listric faults. In 
this work we have chosen to use coherence to delineate the edges of 
the clusters computed from attributes more sensitive to the internal 
character of the seismic facies through simple corendering rather 
than as input to the machine learning algorithms.

Conclusions
The seismic attribute computation carried out on the input seismic 
data as well as the frequency-balanced seismic have shown more 
detailed definition of the channel complex features on the latter. 
Some of these attributes have revealed channel details not seen 
earlier.

The workflow adopted for carrying out seismic facies classi-
fication through unsupervised machine learning by way of SOM 
and GTM application has clearly indicated the lateral variability 
of the channel complex, with the GTM approach having an edge 
over SOM.

Though the analysis is qualitative at present, it paves the way for 
more detailed work as more well and other data become available.
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