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The estimated hydrocarbon reserves 
around the world, when produced, 
can keep us going for the next several 

decades. But scientific records and our 
own experiences are enough evidence 
that climate change is indeed happening. 
Addressing it requires energy extraction 
from non-fossil fuels. One such resource is 
the natural heat of the Earth, or geothermal 
energy.

There are different ways in which the 
heat of the Earth can be utilized. We hear 
of natural hot springs at certain places, 
where, somehow, groundwater emerges 
through the porous and fractured rocks 
after contact with the deeper and hotter 
layers of the Earth’s crust. Geysers spout 
columns of hot water and steam through 
vents in the Earth’s surface. Under suitable 
conditions, the geothermal system in place 
can be enhanced to our advantage. For 
instance, a fluid circulation cycle could be 
set up by injecting (pumping) cold water 
through a well to the depth of, say, a hot 
sandstone reservoir rock and then drawn 
up as hot water through another well a 
certain distance away. Of course, such an 
initiative requires the right kind of rocks 
through which a steady water flow rate can 
be established. Such geothermally heated 
water (usually more than 75 degrees C) 
is used to heat buildings constructed in 
their proximity, where hot water from the 
producing well transfers the heat to the 
housing heating grid.

The feasibility and success of such a 
geothermal reservoir are dependent on 
finding the candidate reservoir rock that will 
allow the water to percolate through. This 
would need good porosity and permeability, 
the presence or absence of faults and 
fractures, high enough temperature and 
knowledge about the structural component 
of the target reservoir. 

Danish Geothermal Potential

The Danish subsurface hosts low-
enthalpy reservoirs (40-80 degrees C) of 
Jurassic, Triassic and Cretaceous age. 
The available geothermal energy has the 
potential to supply district heating for 
hundreds of years into the future, and three 
geothermal plants have been set up in 
Denmark. 

The target reservoir discussed in 
this study is a Triassic-Jurassic deep 
geothermal sandstone reservoir, north 
of Copenhagen, onshore Denmark. The 
data available for this study were a 2-D 
seismic survey from 2013 (comprising five 
profiles with 3 kilometers offset, designed 
for structural mapping, and outlining 
potential geothermal reservoirs), a local 
well (Karlebo-1A), and another well that 
penetrated the reservoir of interest.

The geothermal interval is the 
sandstone-dominated Upper Triassic-
Lower Jurassic Gassum Formation, 
which is being exploited for geothermal 
production and storage in Denmark. 
Figure 1 displays seismic profile 5 with 
geologic interpretation with the Karlebo-1A 
well projection overlaid on it. The Lower 
Jurassic sandstone unit that overlies 
the Gassum Formation is a secondary 
geothermal target. Both these units lie at 
a depth of about 2 kilometers below the 
ground level. Above the Lower Jurassic 
sandstone unit is the Fjerritslev Formation 
that is dominated by marine mudstones 
and shales, which is the regional caprock. 
The Lower Cretaceous sandstone unit 

sits on top of the Fjerritslev Formation, 
and in turn is overlaid by the high-
velocity chalk formation that generates 
interfering multiples and converted 
waves, which makes processing of the 
seismic data challenging. Below the 
Gassum Formation are the impermeable 
mudstones of the Vinding, Oddesund and 
other older formations. The observations 
from Karlebo-1A well indicate that while 
the Lower Jurassic reservoir unit is a 
homogeneous unit, the Gassum sandstone 
contains interlacing of thinly bedded shale. 
The reservoir temperature ranges between 
50 and 65 degrees C in the target interval.

The exploration well Karlebo-1A drilled 
for hydrocarbon exploration is located 
approximately 140 meters from profile 5. It 
has a limited number of log curves (gamma 

ray, sonic and porosity), while a nearby well 
penetrates the same set of formations 
as the Karlebo-1A well and contains a 
complete set of log curves. Thus, the latter 
well was used to derive empirical relations 
between pairs of variables and used to 
determine additional curves such as 
density, shear sonic and shale volume for 
Karlebo-1A well.

The earlier work on seismic reservoir 
characterization of these different 
lithounits was carried out using prestack 
simultaneous impedance inversion and 
predicting facies and reservoir properties 
using the available data. Their results 
demonstrated that several porous and 
clean water-bearing sandstones are 
potential high-quality geothermal reservoirs 
within the two target layers, namely the 

Lower Jurassic sandstone unit and the 
Gassum Formation. Given the availability 
and quality of the data and geological 
complexities, the results were influenced 
by high uncertainty, but highlighted the 
possible target layers. We decided to repeat 
the prestack simultaneous impedance 
inversion on the same data by following a 
somewhat different workflow and made 
use of the available unsupervised machine 
learning techniques for facies classification 
and assess their comparison. Our results 
indicated a superior impedance inversion 
product such as P- and S-impedance, 
which along with other seismic attributes 
were used for ML facies prediction.

Unsupervised Machine Learning for Characterizing 
a Geothermal Sandstone Reservoir
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Figure 1: Seismic profile 5 shown overlain by the main geological units with the projected location of the Karlebo-1A well. Yellow indicates the primary and secondary geothermal targets. 

Figure 2 (top): Section display for seismic profile 5 for PCA1, PCA2 and PCA3 corendered using RGB blending. The P-impedance well log for well Karlebo-1A is shown overlaid 
on each section. Of the four rock types marked to the left of the composite section, not only does rock type 2 stand out in a different color pertaining to shale facies, but the 
variation in facies can also be seen in units 3 and 4 as well.

Figure 3 (bottom): Section display for seismic profile 5 for ICA1, ICA2 and ICA3 components corendered using RGB blending. Compared with the composite display in figure 2, the 
lateral resolution and contrast appears to be better on this display in each of the four intervals defined by the five horizons shown overlaid. The colors representing the different 
facies in the intervals also seem to jive well with the overlaid P-impedance log. The variation in the individual facies in the four intervals seems to be defined somewhat better on 
this display than the PCA composite display in figure 2.
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Unsupervised Machine Learning 
Facies Classification

Unsupervised learning provides 
a means to determine if the seismic 
response can be related to flow units or 
rock types that can be calibrated with 
additional well control, but for which 
we do not understand the underlying 
petrophysical or geological theoretical 
support. Still, seismic interpreters face 
a perpetual challenge of extracting 
heterogeneous seismic facies on different 
generated attributes. The common analysis 
tools include corendering, crossplotting 
and visualization, which can help to an 
extent in terms of simultaneous display 
of the input attributes. The data reduction 
approach resorted to at times applies 
mathematical techniques to reduce the 
number of attributes to a manageable 
subset. Clustering is another way to 
identify elements within the data that have 
similar expressions. 

Here we compare the application of 
some established ML techniques, namely 
principal component analysis, independent 
component analysis, self-organizing 
mapping and generative topographic 
mapping. We find such an application 
promising as the facies results exhibit 
higher vertical and lateral resolution. The 
PCA and ICA applications of unsupervised 
machine learning for facies classification 
have been discussed earlier in the August 
2018 installment of Geophysical Corner. 

Below we briefly describe the machine 
learning techniques and their application 
to the geothermal sandstone reservoir in 
Denmark, which has been described above. 

PCA aims to identify patterns in the 
input attributes by detecting correlation 
between them. If a strong correlation 
exists between some of them, then those 
attributes can be lumped together. Thus, 
PCA is a useful dimensionality reduction 
tool and assumes that the input seismic 
attributes exhibit a Gaussian distribution. 

The attributes used for PCA 
computation were the instantaneous 
amplitude, spectral magnitude (40 hertz), 
P-impedance, VP/VS, Lambda-Rho, and 
porosity. All these attributes are seismic 
amplitude-derived through prestack 
simultaneous impedance inversion or 
otherwise, which expectedly should furnish 
information on the rock types better than 
some of the other attributes.

In figure 2 we show a section display for 
seismic profile 5 for the RGB co-rendered 
PCA-1, PCA-2 and PCA-3 components. 
This display is particularly useful in that 
the facies information contained in each 
of the three principal components can be 
conveniently interpreted on a single display.

ICA is another machine learning 
technique, which classifies the different 
input seismic attributes into independent 
components but does not require them 
to have a Gaussian distribution. More 
description on this technique can be picked 

up from the August 2018 Geophysical Corner.
In figure 3 is shown a section display 

for seismic profile 5 from the ICA-1, ICA-2 
and ICA-3 RGB co-blended data. Notice 
the appearance of the clusters in different 
colors resemble the cluster patterns 
obtained from the PCA co-blended data 
display in figure 2, except they appear to 
be somewhat better defined and exhibiting 
better spatial resolution in terms of color.

Self-Organizing Maps

SOM is another unsupervised machine 
learning technique based on the clustering 
approach that generates a seismic facies 
map from multiple seismic attributes. In 
this technique the initial cluster centroids 
are defined in an N-dimensional attribute 
data space by fitting a plane defined by the 
first two eigen vectors of the covariance 

matrix to the data in a least-squares sense. 
With centroid still locked to this plane, it is 
iteratively deformed into a 2-D surface that 
fits the data still better. Once convergence 
is reached, the N-dimensional data are 
projected onto this 2-D surface. Thus, 
SOM may be considered as projection 
from a multidimensional attribute space 
to a 2-D space or “latent” (hidden) space. 
Usually, the output from SOM computation 
is obtained in the form of two projections 
on the two SOM axes, which can then be 
directly crossplotted and displayed using a 
2-D RGB color bar.

Figure 4 shows section display for 
seismic profile 5 for the SOM-1 and SOM-2 
crossplotted together using a 2-D color 
bar as shown to the lower right. Some of 
the clusters seen on this display are better 
defined than the ones shown earlier from 
PCA and ICA analysis in figures 1 and 2. 

Generative Topographic Mapping

Though the Kohonen SOM method 
described above is easy to implement, is 
computationally inexpensive, and thus 
is a popular unsupervised clustering 
approach, it does have limitations. First, 
there is no theoretical basis for the 
selection of parameters such as training 
radius, neighborhood function and learning 
radius, as all of these are data dependent. 
Secondly, no cost function is defined in the 
method that could be iteratively minimized 
indicating convergence during the training 
process. 

Finally, as a measure of confidence in 
the final clustering results, no probability 
density is defined. An alternative approach 
to the Kohonen SOM method, called 
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Figure 4: Section display for seismic profile 5 from the SOM1 and SOM2 crossplotted using a 2-D color bar. As compared with the earlier methods, besides better 
spatial resolution in intervals 3 and 4, even in interval 2, the resolution is seen to be superior.

Figure 5: Section display for seismic profile 5 from co-rendered GTM1 and GTM-2 using a 2-D color bar. Multiplexed color bar shown in the above display. This 
display exhibits the best spatial resolution in all four intervals 1 to 4 compared with all the other methods discussed in this exercise.
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“generative topographic mapping,” 
overcomes the above-stated limitations. 
It is a nonlinear dimension reduction 
technique that provides a probabilistic 
representation of the data vectors in latent 
space. 

Thus, as the above descriptions 
suggest, the PCA, ICA, SOM and GTM 
methods project data from a higher 
dimensional space (8-D when eight 
attributes are used as input) to a lower 
dimensional space, which may be a 2-D 
plane or a 2-D deformed surface. Once 
projected on to these planes, the data can 
be clustered in that space, corendered with 
RGB or crossplotted using a 2-D color bar.

In figure 5 we show a section display for 
seismic profile 5 for the GTM-1 and GTM-2 
crossplotted together using a 2-D color bar 
as shown to the lower right. This display 
exhibits the best spatial resolution in all 
four intervals 1 to 4 compared with all the 

other methods discussed in this exercise. 
The individual-colored patches or facies 
are crisper and could lead to more accurate 
interpretations.

Conclusions

We have shown a comparison of 
seismic facies classification using the 
machine learning methods such as PCA, 
ICA, SOM and GTM to a seismic profile 
from the Danish area. 

In summary, we find that some of the 
machine learning methods hold promise 
as they exhibit better vertical and spatial 
resolution. Among the machine learning 
methods discussed, the ICA furnishes more 
detail than the PCA. Both the SOM and 
GTM methods provide promising results, 
with the latter yielding more accurate 
definition as seen on the displays.  EX
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