
18 EXPLORER  OCTOBER 2023By SATINDER CHOPRA, RITESH KUMAR SHARMA, KURT J. MARFURT, HEATHER BEDLE and ALEXANDRO VERA-ARROYO

A common problem with seismic data 
is their relatively low bandwidth. 
Significant efforts are made during 

processing to enhance the frequency content 
of the data as much as possible to provide 
a spectral response consistent with the 
acquisition parameters. Traditional seismic 
data usually preserve information with lower 
frequencies between 5 and 10 hertz and 
upper frequencies between 60 or 70 hertz. 
While such bandwidths are acceptable 
for thicker conventional reservoirs, they 
lack the needed resolution to map thinner 
reservoirs or thinner architectural elements 
within a thicker reservoir. Fortunately, the 
advancements in seismic data acquisition 
and processing, coupled with increased 
computer memory and speeds provide cost 
effective solutions for such objectives. 

There are several methods that can be 
utilized to enhance the frequency content of 
the input seismic data.    Here we discuss the 
application of a spectral balancing method 
discussed in detail in the May 2014 installment 
of Geophysical Corner. The workflow consists 
of suppressing crosscutting noise using a 
structure-oriented filtering algorithm, leaving 
mostly signal in the data. Next, the data are 
decomposed into time-frequency spectral 
components, followed by the computation of 
a smoothed average spectrum. If the survey 
has sufficient geologic variability within the 
smoothing window (that is, no perfect “railroad 
tracks”), this spectrum will represent the time-
varying source wavelet. This single average 
spectrum is used to design a single time-
varying spectral scaling factor that is applied 
to each and every trace. Geologic tuning 
features and amplitudes are thus preserved. 

Demonstration 

We demonstrate the application of this 
method on a 3-D seismic data volume from 
Smeaheia area in offshore Norway. Smeaheia 
has been considered as one of the potential 
areas to evaluate CO2 storage.

The Smeahiea area lies about 30 
kilometers east of the Troll gas field (figure 1), 
within the Norwegian continental shelf. The 
Smeahiea target is located in a fault block 
bounded by the Vette Fault to the west and 
the Øygarden Fault to the east and is raised 
about 300 meters relative to the Troll field. 
The Late Jurassic Sognefjord, Fensfjord and 
Krossfjord formations form the producing 
reservoir zones in the Troll gas field.

In the Smeaheia block, there are two 
four-way closure structures, the Alpha 
structure to the west and the Beta structure 
to the east. Two exploration wells, namely 
32/4-1 and 32/2-1 have been drilled into 
these structures, and although the reservoir 
is good, both wells turned out to be wet, 
indicating that the Smeaheia area is not 
charged with hydrocarbons.

In the Smeaheia area, the Sognefjord 
Formation is the primary reservoir consisting 
of medium to coarse-grain, well-sorted, 
micaceous and minor argillaceous sandstone. 
Below this formation lies the Fensfjord 
Formation consisting of medium-grained, well-
sorted sandstone with shale intercalations. 
Underlying the Fensfjord Formation is the 
Krossfjord Formation comprised of medium 
to coarse-grained, well-sorted sandstone.

As the Sognefjord, Fensfjord and 
Krossfjord are sandstone reservoir formations, 
there is concern that detailed mapping of their 
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Figure 1: The Smeaheia area on the Norwegian continental shelf showing the Alpha and Beta structures. The image to the left was prepared with the use 
of Google Earth Pro. Modified after Furre et al., 2017.

Figure 2: Segment of an inline extracted from (a) input seismic data volume, and (b) the same line after spectral balancing. Some relevant markers as well 
as the gamma ray curve for well 32/4-1 are overlaid on the two sections. The frequency spectral for the two data volumes in the indicated zones are also 
shown to the right. Notice the enhancement in the resolution of the reflections after spectral balancing, especially as indicated by colored block arrows in 
the broad zone of interest. Continued on next page u
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properties is hampered by the limited seismic resolution, where 
embedded shale and carbonate stringers might introduce flow 
barriers. In addition, the existence of faults and fractures that 
fall below seismic resolution could provide pathways for CO2 
leakage. All these risks need to be evaluated and mitigated in 
the context of long-term CO2 storage.

The seismic survey covering the Smeaheia (blue dashed 
rectangle shown in figure 1) was acquired by Gassnova 
in 2011 and made publicly available by Gassnova and 
Equinor. The bin size for the data is 12.5 x 25 meters, with a 
sample interval of 4 milliseconds. The interpreted horizons, 
well log data for the two 32/4-1 and 32/2-1 wells and well 
completion reports were also provided. These well logs 
included complete gamma ray curves, but with sonic and 
density logs that were not recorded for the shallower depths. 
The seismic data volume is of good quality. 

Figure 2a and b shows a comparison of segments of 
seismic sections traversing the 3-D seismic volume before and 
after spectral balancing, along with their frequency spectra. 
Notice the well-defined appearance of the reflections in figure 
2b as well as the flattened appearance of the frequency spectra 
as compared with the input seismic volume. 

This data volume was then put through structure-
oriented filtering and attribute computation. To bring out 
the advantage of spectral balancing and structure-oriented 
filtering, we compute relevant attributes on the data before 
and after the two data conditioning processes and compare 
the results in the next section.

Generation of a Suite of Attributes

With the improved vertical resolution seen in figure 2b, our 
next task is to determine if the spectrally balanced seismic 
data also enhances the lateral resolution as measured by 
seismic attributes. The following attributes were computed on 
spectrally balanced seismic data. 

u Relative acoustic impedance is computed by 
continuous integration of the original seismic trace with 
the subsequent application of a low-cut filter. Because it 
assumes a zero-phase wavelet that is as close to a spike 
as possible, the improved resolution of spectral balancing 
will provide improved results over the original data. The 
impedance transformation of seismic amplitudes enables 
the transition from reflection interface to interval properties 
of the data, without the requirement of a low-frequency 
model. Figure 3 shows a comparison of stratal slices 32 
milliseconds above the Sognefjord marker from the relative 
acoustic impedance attributes computed from input seismic 
data and input seismic data after spectral balancing. 
Notice the crisp definition of the faults as indicated by the 
highlighted areas in dashed purple outlines.

Likewise, the other attributes computed on the two seismic 
volumes are listed below along with their brief descriptions.

u Instantaneous amplitude is a measure of the reflection 
strength of the analytic seismic trace, independent of 
phase, and provides information on intensity of reflections. 
Similarly, instantaneous frequency provides information 
on attenuation and layer thickness. We use a smoother, 
more stable version of the instantaneous frequency usually 
obtained by weighting it by the envelope.

u Sweetness is a “meta-attribute” or one computed from 
others, which in this case is the ratio of the envelope to the 
square root of the instantaneous frequency. A clean sand 
embedded in a shale will exhibit high envelope and lower 
instantaneous frequency, and thus higher sweetness, than the 
surrounding shale-on-shale reflections.

u GLCM or grey-level co-occurrence matrix energy is a 
measure of textural uniformity in the data. If the reflectivity 
along a horizon is nearly constant, it will exhibit high GLCM 
energy.

u Spectral magnitude: The magnitude of spectral 
components ranging from 20 to 70 hertz, which is the effective 
bandwidth of the input seismic data.

Specifically, the attributes used for the computation of 
seismic facies classification using some of the unsupervised 
machine learning methods were the relative acoustic 
impedance, envelope, sweetness, GLCM energy and spectral 
magnitudes at 25, 40 and 55 hertz. 

Two sets of these different attributes were generated 
– one from the original data and one from the data 
preconditioned using spectral balancing and structure-
oriented filtering. Each dataset then served as input to 
unsupervised seismic facies classification using machine 
learning techniques described in the next section.

Unsupervised Seismic Facies Classification
Using ML Techniques

Unsupervised learning provides a means to determine 
if the seismic response can be related to flow units or rock 
types that can be calibrated with additional well control, but for 
which we do not understand the underlying petrophysical or 
geological theoretical support. Still, seismic interpreters face a 
perpetual challenge of extracting heterogeneous seismic facies 

on different generated attributes. Common analysis tools 
include corendering, crossplotting and visualization, which can 
help to an extent in terms of simultaneous display of the input 
attributes. Alternatively, projection techniques like principal 
component analysis represent the most common features 
seen in multiple attribute volumes by a more manageable 
smaller subset of linearly combined attributes. This smaller 
subset is then displayed by plotting three linear combinations 
against red, green and blue. In all these workflows, the human 
interpreter examines an image in color or in a crossplot, 
identifies a feature of interest and then defines its geologic 
meaning. Subconsciously, the human interpreter is defining 
clusters that have a given color or location in the crossplot. 
Unsupervised machine learning does the same thing but 
can use more than three independent attributes common to 
visualization and crossplotting workflows. Whether interactive 
or through machine learning, clustering is only part of seismic 
interpretation. Equally important is the spatial relation between 
clusters, e.g., the change in cluster from channel fill to flood 
plain, or changes in clusters across a fault. In this article, we 
emphasize such lateral changes by corendering the images 
with coherence. In this manner, lateral changes in many of 

Figure 3: Stratal slice 32 milliseconds above the Sognefjord marker through the relative acoustic impedance attributes computed from 
(a) the original seismic data, and (b) the seismic data after spectral balancing. Notice the crisp definition of the faults as indicated by 
the white block arrows as well as the two highlighted areas in dashed white outlines and block arrows.
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the clusters can be easily associated with 
an established geologic model. In contrast, 
lateral changes in clusters that are not 
delineated by coherence indicated more 
gradational changes in lithology or thickness 
that are easier to overlook. 

Here we compare the application of 
two established ML techniques, namely 
self-organizing mapping and generative 
topographic mapping. We find such 
an application promising as the facies 
results exhibit higher vertical and lateral 
resolution. More details about the methods 
and their applications can be picked up 
from the articles published in the November 
2020 and January 2022 installments of 
Geophysical Corner.

Self-Organizing Maps

SOM is an unsupervised machine learning 
technique based on the clustering approach 
that generates a seismic facies map from 
multiple seismic attributes. In this technique 
the initial cluster centroids are defined in an 
N-dimensional attribute data space by fitting 
a plane defined by the first two eigen vectors 
of the covariance matrix to the data in a 
least-squares sense. With centroid still locked 
to this plane, it is iteratively deformed into a 
2-D surface that fits the data still better. Once 
convergence is reached, the N-dimensional 
data are projected onto this 2-D surface. 
Thus, SOM may be considered as projection 
from a multidimensional attribute space 
to a 2-D space or “latent” (hidden) space. 
Usually, the output from SOM computation 
is obtained in the form of two projections on 
the two SOM axes, which can then be directly 
crossplotted and displayed using a 2-D RGB 
color bar.

Figure 4 shows the equivalent stratal 
displays (within the Fensfjord formation) 
extracted from the SOM crossplot volume 
computed for the input and spectrally-
balanced versions of the seismic data, using 
a 2-D color bar. Some of the clusters seen on 
the display in figure 4b are better defined than 
the ones shown in figure 4a.

Generative Topographic Mapping

Though the Kohonen SOM method 
described above is easy to implement, is 
computationally inexpensive, and thus 
is a popular unsupervised clustering 
approach, it does have limitations. First, 
there is no theoretical basis for the selection 
of parameters such as training radius, 
neighborhood function and learning radius, 
as all of these are data dependent. Secondly, 
no cost function is defined in the method 
that could be iteratively minimized indicating 
convergence during the training process. 
Finally, as a measure of confidence in the 
final clustering results, no probability density 
is defined. An alternative approach to the 
Kohonen SOM method, called “generative 
topographic mapping,” overcomes the 
above-stated limitations. It is a nonlinear 
dimension reduction technique that provides 
a probabilistic representation of the data 
vectors in latent space.

Thus, as the above descriptions suggest, 
the SOM and GTM methods project data 
from a higher dimensional space (7-D when 
seven attributes are used as input) to a 
lower dimensional space, which may be a 
2-D plane or a 2-D deformed surface. Once 
projected on to these planes, the data can be 
clustered in that space, corendered with RGB 
or crossplotted using a 2-D color bar.

In figure 5 we show the equivalent 
displays (within the Krossfjord formation), 
where some of the clusters can be 
interpreted with ease with less background 
clutter and confusion The individual-colored 
patches or facies are crisper and could lead 
to more accurate interpretations.

Conclusions

We have found that spectral balancing of 
the input seismic data when used for attribute 
generation and further used in some of the 
multiattribute processes discussed here can 
significantly aid in accurate interpretation. 
Results obtained for the unsupervised 
machine learning applications employing 
both the input seismic as well as its spectrally-
balanced version depict superior performance 
of the latter in terms of clarity of clusters 
as well as color variations within them, 
probably in response to the expected geologic 
variations as mentioned in the introduction.

Applications of SOM and GTM techniques 
to the same data allowed us to assess their 
relative strengths as well as their suitability. We 
found that both GTM and SOM show more 
promising results, with GTM having an edge 

over SOM in terms of the detailed distribution 
of seismic facies in terms of better resolution 
and distinct definition of the geologic features 
seen on the displays. 

Usually, the seismic facies maps in the 
zones of interest are calibrated with the 
lithofacies information obtained from well 
cores and cuttings. As there is appreciable 
difference in resolution between the two 
types of data, it is advisable to enhance the 
resolution of seismic data by adopting a 
spectral balancing workflow. Such a workflow 
can narrow down the resolution gap between 
the facies data types (seismic and geologic) 
as well as help perform a better correlation/
calibration between the two. This is thus the 
motivation for the work described in this paper. 
Though the analysis is qualitative at present, it 
paves the way for more detailed work as more 
well and other data become available.
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Figure 4: Stratal slice within Fensfjord 
Fm extracted from the SOM crossplot 
volume computed on attributes 
generated on (a) input seismic data 
volume, and (b) spectrally balanced 
input seismic data volume. The two 
volumes have been corendered with the 
respective multispectral energy ratio 
coherence attribute volumes. Better 
spatial resolution of the seismic facies 
is seen in (b) than in (a). Only the target 
area between the Vette and Øygarden 
was classified.

Figure 5: Stratal slice within Krossfjord 
Fm extracted from the GTM crossplot 
volume computed on attributes 
generated on (a) input seismic data 
volume, and (b) spectrally balanced 
input seismic data volume. The two 
volumes have been corendered with the 
respective multispectral energy ratio 
coherence attribute volumes. Better 
spatial resolution of the seismic facies 
is seen in (b) than in (a). As with SOM, 
only the target area between the Vette 
and Øygarden was classified.
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