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Abstract 

The interpretation of discrete stratigraphic features on seismic data is limited by its bandwidth 

and its signal-to-noise ratio. Unfortunately, well-resolved reflections from the top and base of 

subtle stratigraphic geologic boundaries occur only for features thick enough to be imaged by 

the bandlimited data. In contrast, seismically thin stratigraphic features approaching a quarter-

wavelength in thickness give rise to composite, or “tuned,” seismic reflections. Data conditioning 

to balance the seismic spectrum provides significant improvement not only in vertical, but also in 

lateral resolution of the seismic data. Spectral balancing enhances the frequency content of the 

seismic data and preserves the tuning features and amplitudes and leads to more accurate 

definition of the features of interest. We show that attributes computed from spectrally-balanced 

data better delineate the finer features in the zones of interest. Some attribute combinations can 

be effectively combined for seismic facies classification using unsupervised machine learning 

applications including kmeans clustering, self-organizing mapping (SOM) and generative 

topographic mapping (GTM). We find that improving the data bandwidth through spectral 

balancing improves not only the resolution of attributes by themselves, but also when combined 

using machine learning. 

Introduction 

A common problem with seismic data is their relatively low bandwidth. Significant efforts are 

made during processing to enhance the frequency content of the data as much as possible to 

provide a spectral response that is consistent with the acquisition parameters. Traditional 
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seismic data are seen to preserve information with a frequency content going up to 60 or 70 Hz 

at the high end of the bandwidth. While such bandwidths may be acceptable for thicker 

conventional reservoirs, they could lack the needed resolution for thinner reservoirs or to map 

thinner architectural elements within a thicker reservoir. The advancements in seismic data 

acquisition and processing, coupled with computer capacities and speeds, provide cost effective 

solutions for such objectives. 

There are several methods that are used during processing to enhance the frequency content of 

the input seismic data. Here we mention a few commonly used processes that can help the 

interpreter to extract meaningful information from seismic data. We follow that up with a method 

of choice and demonstrate its application to a vintage seismic dataset from the northern North 

Sea. 

Time-variant spectral whitening: One of the oldest and most widely used methods is to use time-

variant spectral whitening (TVSW). The method involves passing the input data through a 

number of narrow band-pass filters and determining the decay rates for each frequency band. 

The inverse of these decay functions for each frequency band is applied and the results are 

summed. In this way, the amplitude spectrum for the output data is whitened in a time-variant 

way. The number of filter bands, the width of each band and the overall bandwidth of application 

are the different parameters that are used and adjusted for an optimized result (Yilmaz, 2001). 

In this method, the high-frequency noise is usually amplified and so a band-pass filter must be 

applied to the resulting data. Since it is a trace-by-trace process, TVSW is not appropriate for 

AVO applications. 

Inverse Q-filtering: If we had an analytic form for an attenuation function, it would then be easy 

to compensate for its effects. Thus, in practice, attempts are first made to estimate a Q-model 

for the subsurface. Inverse Q-filtering compensates for the time-variant absorption effects, 

thereby broadening the effective seismic bandwidth by correcting the loss of high-frequency 

signal. The physics of attenuation is complicated, with contributions from scattering from 

fractures and rugose surfaces, scattering from patchy saturation, the squirt mechanism of 

energy loss, and others. These attempts have met with a varying degree of success, depending 

on the assumptions used in the approach and how well they are met in practice. 

Frequency-split structurally oriented filtering: Helmore (2009) introduced frequency split 

structurally oriented filtering wherein the input seismic data is divided into a number of 

frequency bands, followed by running structurally oriented filters separately to each of the bands 

and then recombining the results. This procedure reduces noise in selected frequency bands 

and results in a higher signal-to-noise ratio as well as enhanced resolution. Structurally oriented 

filters do not suffer from windowing artifacts and are precisely adapted to the local dip (Helmore, 

2009). 
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In order to apply the spectral balancing method to seismic data described in the next section, 

we selected the 3D seismic data from Smeaheia area in offshore Norway. Smeaheia has been 

considered as one of the potential areas for CO2 storage and evaluation. 

The Smeahiea area lies about 30 km east of the Troll gas field (Figure 1), within the Norwegian 

continental shelf. The Smeahiea target is located in a fault block bounded by the Vette Fault to 

the west and the Øygarden Fault to the east and is raised about 300 m relative to the Troll field. 

The Late Jurassic Sognefjord, Fensfjord, and Krossfjord formations form the producing reservoir 

zones in the Troll gas field. 

In the Smeaheia block, there are two four-way structural closures (Lauritsen et al., 2018), the 

Alpha structure to the west and the Beta structure to the east. Two exploration wells, namely 

32/4-1 and 32/2-1 have been drilled into these structures, and although the reservoir is good, 

both wells turned out to be dry, indicating that the Smeaheia area is not charged with 

hydrocarbons. 

Figure 1: The Smeaheia area on the Norwegian continental shelf with Alpha and Beta structures indicated. The 

image to the left was prepared with the use of Google Earth Pro. (Modified after Furre et al., 2017) 

In the Smeaheia area, the Sognefjord Formation is the primary reservoir, consisting of medium-

to-coarse-grain, well-sorted, micaceous, and minor argillaceous sandstone. Below this formation 

lies the Fensfjord Formation, consisting of medium-grained, well-sorted sandstone with shale 

intercalations. Underlying the Fensfjord Formation is the Krossfjord Formation, with medium-to-

coarse-grained, well-sorted sandstone. 

Overlying the Sognefjord Formation are shales of the Heather and Draupne formations. While 

the Heather Formation is comprised of silty claystone with thin streaks of limestone 

interfingering the Sognefjord, Fensfjord and Krossfjord sandstones, the Draupne Formation 
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consists of dark grey to brown/black shale that is non-calcareous, carbonaceous, and fissile 

claystone. Both the Heather and Draupne formations serve as primary seals for the proposed 

CO2 storage reservoir sandstones of the Sognefjord, Fensfjord and Krossfjord formations. 

As the Sognefjord, Fensfjord and Krossfjord are sandstone reservoir formations, there is 

concern about evaluation of their properties for thicknesses that fall below seismic resolution, 

which could come from shale and carbonate stringers within these zones. Finally, the existence 

of faults/fractures that fall below seismic resolution could provide pathways for fluid losses. All 

these risks need to be evaluated and mitigated in the context of long-term CO2 storage. 

Available seismic data 

The available seismic data were the GN1101 3D survey covering the Smeaheia (blue dashed 

rectangle shown in Figure 1) acquired by Gassnova in 2011 and made publicly available by 

Gassnova and Equinor. The bin size for the data is 12.5 x 25 m, with a sample interval of 4 ms. 

Gassnova provided interpreted horizons and well log data for the two 32/4-1 and 32/2-1 wells 

along with well completion reports. These logs consisted of complete gamma ray curves, but 

with sonic and density logs that were not recorded for the shallower depths. The seismic data 

volume is of good quality. 

Spectral balancing of seismic data for attribute analysis 

For a decade-old vintage seismic dataset, we need to apply an amplitude-friendly poststack 

spectral balancing procedure to enhance the vertical and lateral resolution. The spectral 

balancing procedure of choice was the method first discussed by Marfurt and Matos (2014), 

also demonstrated by Chopra and Marfurt (2016). 

In this method, data are first decomposed into time-frequency spectral components. Then the 

power of the spectral magnitude, P (t, f) = [m (t, f)]2  is averaged over all the traces (j = 1, …K) in 

the data volume spatially and in the given time window, which yields a smoothed average power 

spectrum, 𝑃!"#(𝑡, 𝑓). Next, we compute the peak of the average power spectrum at each time 

sample, 𝑃$%!&(𝑡) = 𝑀𝐴𝑋[𝑃!"#(𝑡, 𝑓)]. Both the average power spectrum and the peak of the 

average power spectrum are used to design a single time-varying spectral-balancing operator 

that is applied to every trace in the data: 

𝑚'(!)(𝑡, 𝑓) = . 𝑃$%!&(𝑡)𝑃!"#(𝑡, 𝑓) + ε𝑃$%!&(𝑡)1
*
+ 	𝑚(𝑡, 𝑓)																																										(1) 

where ε is the prewhitening parameter. A conservative value would be ε = 0.01 which would 

constrain amplification of the spectral magnitude to range between 1 and 10. However, as with 

any filter, the interpreter needs to determine whether such aggressive spectral balancing 
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introduces ringing in the data. The spectral balancing given by equation 1 is amplitude friendly, 

as it applies the same time-varying filter to each trace of entire data volume. 

Figure 2a and 2b show a comparison of segments of seismic sections traversing the 3D seismic 

volume before and after spectral balancing, along with their frequency spectra. Notice the well-

defined appearance of the reflections in Figure 2b as well as the flattened appearance of the 

frequency spectra as compared with the input seismic volume. 
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Figure 2: Segment of an inline extracted from (a) the input seismic data volume, and (b) the same line after spectral 

balancing. Some relevant markers as well as the gamma ray curve for well 32/4-1 are overlaid on the two sections. 

(c) Zoom of the two sections cropped to the area enclosed by the dashed grey oblong shapes on the two images 

shows clearly the higher frequency content after frequency balancing. The frequency spectra for the two data 

volumes in the indicated zones are also shown to the right. Notice the enhancement in the resolution of the 

reflections after spectral balancing, especially as indicated by coloured block arrows in the broad zone of interest. 

This data volume was then put through structure-oriented filtering and attribute computation. To 

bring out the advantage of spectral balancing and structure-oriented filtering, we compute 

relevant attributes on the data before and after the two data-conditioning processes and 

compare the results in the next section. 

Generation of a suite of attributes 

With the improved vertical resolution seen in Figure 2b, our next task is to determine if the 

spectrally balanced seismic data also enhances the lateral resolution as measured by seismic 

attributes. The following attributes were computed on spectrally balanced seismic data. 

Relative acoustic impedance: Relative acoustic impedance is computed by continuous 

integration of the original seismic trace with the subsequent application of a low-cut filter. 

Because it assumes a zero-phase wavelet that is as close to a spike as possible, the improved 

resolution of spectral balancing will provide improved results over the original data. The 

impedance transformation of seismic amplitudes enables the transition from reflection interface 

to interval properties of the data, without the requirement of a low-frequency model.  
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Figure 3: Segment of an inline extracted from relative acoustic impedance attribute computed on the (a) input 

seismic data volume, and (b) input seismic data volume after spectral balancing. Some relevant markers and the 

gamma ray curve for well 32/4-1 are overlaid on the two sections. Notice the enhancement in the resolution of the 

reflections after spectral balancing. 
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Figure 3 shows a comparison of inline sections from relative impedance computed on the input 

seismic volume (Figure 3a) and the equivalent section from relative impedance computed on 

spectrally-balanced seismic volume (Figure 3b). Notice the enhanced resolution and better 

relative impedance definition on the section in Figure 3b. A similar comparison of stratal slices 

32 ms above the Sognefjord marker from the relative acoustic impedance attributes computed 

from input seismic data and input seismic data after spectral balancing is shown in Figure 4. 

Notice the crisp definition of the faults as indicated by the highlighted areas in dashed purple 

outlines. 

 

Figure 4: Stratal slice 32 ms above the Sognefjord marker through the relative acoustic impedance attributes 

computed from (a) the original seismic data, and (b) the seismic data after spectral balancing. Notice the crisp 

definition of the faults as indicated by the white block arrows as well as the two highlighted areas in dashed white 

outlines and block arrows. 
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Likewise, the other attributes computed on the two seismic volumes are listed below along with 

their brief descriptions. 

Instantaneous envelope/frequency: Instantaneous envelope is a measure of the instantaneous 

energy of the analytic seismic trace, independent of phase, and provides information on 

intensity of reflections. Similarly, instantaneous frequency provides information on attenuation 

and layer thickness. We use a smoother, more stable version of the instantaneous frequency 

usually obtained by weighting it by the envelope. 

Sweetness: Sweetness is a “meta-attribute” or one computed from others, which in this case is 

the ratio of the envelope to the square root of the instantaneous frequency. A clean sand 

embedded in a shale will exhibit high envelope and lower instantaneous frequency, and thus 

higher sweetness, than the surrounding shale-on-shale reflections. 

GLCM Energy: GLCM or grey-level co-occurrence matrix energy is a measure of textural 

uniformity in the data. If the reflectivity along a horizon is nearly constant, it will exhibit high 

GLCM energy. 

Spectral magnitude: The magnitude of spectral components ranging from 20 Hz to 70 Hz, which 

is the effective bandwidth of the input seismic data. 

Specifically, the attributes used for the computation of seismic facies classification using some 

of the unsupervised machine learning methods were the relative acoustic impedance, envelope, 

sweetness, GLCM energy and spectral magnitudes at 25 Hz, 40 Hz and 55 Hz.  

Two sets of these different attributes were generated – one from the original data and one from 

the data preconditioned using spectral balancing and structure-oriented filtering. Each dataset 

will serve as input to unsupervised seismic facies classification using machine learning 

techniques described in the next section. 

Seismic facies classification using machine learning techniques on input 
seismic and spectral balanced seismic data 

We apply three different unsupervised seismic facies classification machine learning methods to 

the two attribute data sets: kmeans, self-organizing mapping (SOM), and generative topographic 

mapping (GTM). Machine learning uses mathematical operations to learn from the similarities 

and differences in the provided data and make decisions or predictions. There are two broad 

families of machine learning algorithms. The first algorithm family includes dimensionality 

reduction algorithms such as Principal Component Analysis (PCA) and Independent Component 

Analysis (ICA). When plotted against a 2D color bar, the interpreter may “see” clusters, but the 

algorithm output is a continuum of data in a lower dimensional space. The second, 

unsupervised classification algorithm family attempts to explicitly cluster the data into a finite 
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number of groups that in some metric “best represent” the data provided. kmeans clustering is one 

such process. Before the analysis, there is no interpretation assigned to any given group; rather, 

“the data speak for themselves”. However, the choice of input attributes biases the clustering to 

features of interpretation interest. Biasing the training data to favor geologic features of interest 

(e.g., by more heavily weighting a bright-spot anomaly) also provides interpreter control of the 

output. We also show the application of self-organizing mapping (SOM) and generative 

topographic mapping (GTM) to the Smeaheia data volume. All the attribute data should first be 

scaled to account for different units of measurement, mean, and standard deviation. For a non-

Gaussian distribution of attribute values, we follow Ha et al. (2021) to further scale the data. 

kmeans clustering 

kmeans clustering is one of the simplest clustering algorithms and is available in most seismic 

interpretation software. kmeans organizes a given distribution of length-N attribute vectors at R 

voxels, xr, where r = 1, 2, …R, into a desired number of K clusters. The clustering process 

begins by assigning at random K centroids which can serve as centers of the groups we wish to 

form, where each centroid defines one cluster. Next, the distance between each data point and 

the centroid of that cluster is calculated. A point may be within a cluster if it is closer to the 

centroid in that cluster than any other centroid. As some reorganization of the points in different 

clusters has taken place, the centroids are recalculated for each cluster. These two steps are 

carried out iteratively until there is no more shifting of the centroids and the process has 

converged. The calculation of distance between the centroid and the data points referred to 

above is the traditional Euclidean distance computed from the scaled data, which assumes 

there is no correlation between the classification variables. 

Figure 5 shows a stratal slice comparison 80 ms below the Sognefjord marker, which is within 

the Sognefjord Formation, for kmeans clustering generated with five clusters for both the input and 

spectrally-balanced seismic data. The number five is no magic number, but the maximum 

number of facies expected at that level. We see a better distribution of coloured patches on the 

display in Figure 5b, which are a representation of the different facies in the data at that level. 

A similar comparison of stratal slices from the kmeans volume is shown in Figures 6 and 7 at 

levels within the Fensfjord and Krossfjord formations, and at each level we see a superior 

distribution of the seismic facies corresponding to the different colours for the kmeans seismic 

facies generated on the spectrally-balanced version. 
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Figure 5: Stratal slices 80 ms below the Sognefjord marker (within the Sognefjord Fm) through the kmeans volume 

generated from attributes computed from (a) the original seismic data volume, and (b) the spectrally balanced input 

seismic data volume. The two volumes have been corendered with the respective multispectral energy ratio 

coherence attribute volumes (not used in the clustering) to delineate edges. While only two seismic facies (yellow and 

red) are seen on the display in (a), the display in (b) exhibits three facies (green, yellow, and red) and thus provide 

better spatial facies resolution. Only the region of interest between the Vette and Øygarden faults was used in the 

classification in order to minimize the variability in the data and provide maximum resolution in the target zone.  
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Figure 6: Stratal slices at 136 ms below the Sognefjord marker (within the Fensfjord Fm) extracted from the kmeans 

volume computed on attributes generated on (a) the input seismic data volume, and (b) the spectrally balanced input 

seismic data volume. The two volumes have been corendered with the respective multispectral energy ratio 

coherence attribute volumes. While only two seismic facies (yellow and red) are seen on the display in (a), the display 

in (b) exhibits four facies (green, yellow, purple and red) and thus better spatial facies resolution. Only the region of 

interest between the Vette and Øygarden faults was used in the classification in order to minimize the variability in the 

data and provide maximum resolution in the target zone. 
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Figure 7: Stratal slices at 228 ms below the Sognefjord marker (within the Krossfjord Fm) extracted from the kmeans 

volume computed on attributes generated on (a) the input seismic data volume, and (b) the spectrally balanced input 

seismic data volume. The two volumes have been corendered with the respective multispectral energy ratio 

coherence attribute volumes. While only two seismic facies (yellow and red) are seen on the display in (a), the display 

in (b) exhibits four facies (green, yellow, purple and red) and thus better spatial facies resolution. Only the region of 

interest between the Vette and Øygarden faults was used in the classification in order to minimize the variability in the 

data and provide maximum resolution in the target zone. 

Self-organizing maps 

Like kmeans, self-organizing mapping (SOM) is a technique that generates a seismic facies map 

from multiple seismic attributes, again in an unsupervised manner. In contrast to kmeans, SOM 

defines its initial cluster centroids in an N-dimensional attribute data space by least-squares 

fitting the data with a plane that best fits the data defined by the first two eigenvectors of the 

covariance matrix (Kohonen, 1982, 2001). This plane with centroids locked to it is then 
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iteratively deformed into a 2D surface called a manifold that better fits the data. After 

convergence, the N- dimensional data are projected onto this 2D surface, which in turn are 

mapped against a 2D plane or “latent” (hidden) space defined by axes SOM-1 and SOM-2, onto 

which the interpreter either explicitly defines clusters by drawing polygons, or implicitly defines 

clusters by plotting the results against a 2D color bar. 

Figure 8: Stratal slice at a level within the Sognefjord Formation (80 ms below the Sognefjord marker) extracted from 

the SOM crossplot volume computed on attributes generated on (a) the input seismic data volume, and (b) the 

spectrally balanced input seismic data volume. The two volumes have been corendered with the respective 

multispectral energy ratio coherence attribute volumes. Better spatial resolution of the seismic facies is seen in (b) 

than in (a). As with kmeans, only the target area between the Vette and Øygarden was classified. 

Figure 8 shows the equivalent stratal displays (within the Sognefjord formation) extracted from 

the SOM crossplot volume computed for the input and spectrally-balanced versions of the 

seismic data, using a 2D color bar or multiplexed into a 1D color bar as shown alongside. Some  
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of the clusters seen on the display in Figure 8b are better defined than the ones shown in Figure 

8a, or the equivalent kmeans clustering displays shown in Figure 5. 

A similar comparison of stratal slices from the SOM crossplot volume is shown in Figures 9 and 

10 at levels within the Fensfjord and Krossfjord formations respectively, and at each level we 

see a superior distribution of the seismic facies corresponding to the different colours for the 

SOM seismic facies generated on the spectrally-enhanced version. 

 

Figure 9: Stratal slice at 136 ms below the Sognefjord marker (within the Fensfjord Fm) extracted from the SOM 

crossplot volume computed on attributes generated on (a) the input seismic data volume, and (b) the spectrally 

balanced input seismic data volume. The two volumes have been corendered with the respective multispectral 

energy ratio coherence attribute volumes. Better spatial resolution of the seismic facies is seen in (b) than in (a). As 

with kmeans, only the target area between the Vette and Øygarden was classified. 
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Figure 10: Stratal slice at 228 ms below the Sognefjord marker (within the Krossfjord Fm) extracted from the SOM 

crossplot volume computed on attributes generated on (a) the input seismic data volume, and (b) the spectrally 

balanced input seismic data volume. The two volumes have been corendered with the respective multispectral 

energy ratio coherence attribute volumes. Better spatial resolution of the seismic facies is seen in (b) than in (a). As 

with kmeans, only the target area between the Vette and Øygarden was classified. 
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Generative Topographic Mapping 

The Kohonen self-organizing map described above, while the most popular unsupervised 

clustering technique, being easy to implement and computationally inexpensive, has limitations. 

There is no theoretical basis for selecting the training radius, neighborhood function and 

learning rate as these parameters are data dependent (Bishop et al., 1998; Roy, 2013). No cost 

function is defined that could be iteratively minimized and would indicate the convergence of the 

iterations during the training process, and finally no probability density is defined that could yield 

a confidence measure in the final clustering results. Bishop et al. (1998) developed an 

alternative dimension reduction technique called a generative topographic mapping (GTM) 

algorithm that provides a probabilistic representation of the data vectors in latent space. 

The GTM method begins with an initial array of grid points arranged on a lower dimensional 

latent space. Each of the grid points are then nonlinearly mapped onto the lower dimensional 

non-Euclidean curved surface defined by K centroids mk of the N-dimensional Gaussians with a 

fixed variance 1/β that best represent the R data vectors. At each iteration, the variance 1/β is 

decreased and the Gaussian centroids mk moved until we reach convergence. Roy (2013) and 

Roy et al. (2014) describe the details of the method and demonstrate its application for mapping 

of seismic facies to the Veracruz Basin, Mexico. 

As it may have become apparent from the descriptions above, the SOM and GTM techniques 

project data from a higher dimensional space (8D when 8 attributes are used) to a lower 

dimensional space which may be a 2D plane or a 2D deformed surface. Once they are 

projected onto a lower dimensional space, the data can be clustered in that space, or 

interactively clustered with the use of polygons. 

In Figures 11 to 13 we show the displays equivalent to those shown for kmeans or SOM analysis, 

where some of the clusters can be interpreted with ease with less background clutter and 

confusion. 
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Figure 11: Stratal slice at 80 ms below the Sognefjord marker (within the Sognefjord Fm) extracted from the GTM 

crossplot volume computed on attributes generated on (a) the input seismic data volume, and (b) the spectrally 

balanced input seismic data volume. The two volumes have been corendered with the respective multispectral 

energy ratio coherence attribute volumes. Better spatial resolution of the seismic facies is seen in (b) than in (a). As 

with kmeans, only the target area between the Vette and Øygarden was classified.  
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Figure 12: Stratal slice at 136 ms below the Sognefjord marker (within the Fensfjord Fm) extracted from the GTM 

crossplot volume computed on attributes generated on (a) the input seismic data volume, and (b) the spectrally 

balanced input seismic data volume. The two volumes have been corendered with the respective multispectral 

energy ratio coherence attribute volumes. Better spatial resolution of the seismic facies is seen in (b) than in (a). As 

with kmeans, only the target area between the Vette and Øygarden was classified. 
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Figure 13: Stratal slice at 228 ms below the Sognefjord marker (within the Krossfjord Fm) extracted from the GTM 

crossplot volume computed on attributes generated on (a) the input seismic data volume, and (b) the spectrally 

balanced input seismic data volume. The two volumes have been corendered with the respective multispectral 

energy ratio coherence attribute volumes. Better spatial resolution of the seismic facies is seen in (b) than in (a). As 

with kmeans, only the target area between the Vette and Øygarden was classified. 

Conclusions 

We have found that spectral balancing of the input seismic data when used for attribute 

generation and further used in some of the multiattribute processes discussed in this paper can 

significantly aid in accurate interpretation. Results obtained for the unsupervised machine 

learning applications employing both the input seismic as well as its spectrally-balanced version 

depict superior performance of the latter in terms of clarity of clusters as well as color variations 

within them, probably in response to the expected geologic variations as mentioned in the 

introduction. 
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Applications of kmeans, SOM and GTM techniques to the same data allowed us to assess their 

relative strengths as well as their suitability. We found that both GTM and SOM show more 

promising results than kmeans, with GTM having an edge over SOM in terms of the detailed 

distribution of seismic facies and in terms of better resolution and distinct definition of the 

geologic features seen on the displays. The actual cluster number assigned to a kmeans cluster 

changes after data conditioning which causes challenges when trying to compare the two 

results. In contrast, both SOM and GTM are computed on 2D manifolds where the clusters are 

ordered such that small-to-moderate changes in the input through data conditioning gives rise to 

correspondingly small-to-moderate changes in the clustering. 

Usually, the seismic facies maps in the zones of interest are calibrated with the lithofacies 

information obtained from well cores and cuttings. As there is appreciable difference in 

resolution between the two types of data, it is advisable to enhance the resolution of seismic 

data by adopting a spectral balancing workflow. Such a workflow can narrow down the 

resolution gap between the facies data types (seismic and geologic) as well as help perform a 

better correlation/calibration between the two. This is thus the motivation for the work described 

in this paper. 

Although we can neither resolve such heterogeneities nor define their cause without additional 

well control, the seismic data will often vary in subtle ways through lateral changes in the 

amplitude, spectrum, and continuity which we can quantitatively measure with seismic 

attributes. The N attributes define an N-dimensional vector in attribute space. By clustering like 

vectors together, we implicitly cluster reservoir facies that exhibit the same seismic response. 

Once clustered, the a posteriori analysis can take two forms: 

(1) the human interpreter looks at each cluster and describes a pattern commonly used in 

interactive interpretation with words describing the cluster such as "smooth", "blocky", "wormy", 

"railroad track", "rugose", and so forth. 

(2) The human interpreter looks at the values of the cluster attribute centroid muk (for kmeans), 

prototype vector/neuron pk (for SOM), or mean, mk, (for GTM), unscales them, and then 

compares the unscaled values to each attribute histogram for the entire survey. The resulting 

description will then be more quantitative than the previous form with words like "high 

bandwidth", "low coherence", "high entropy", "moderate energy" and so forth, where the values 

of high, moderate, and low refer to how the cluster attribute vector values relate to the median of 

each of the unscaled (world coordinate) attributes used interactively. 

Once we have ground truth provided by well control, simulator history matching, microseismic 

events, or other measurements, the interpreter can then assign a more geologic or 

petrophysical name to the cluster such as "limestone stringers", "poor flow unit/baffle", "brittle" 

as appropriate. 
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Though the analysis is qualitative at present, it paves the way for more detailed work as more 

well and other data become available. 
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