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Abstract

The Delaware and Midland Basins are multistacked plays with production being drawn from different zones.
Of the various prospective zones in the Delaware Basin, the Bone Spring andWolfcamp Formations are the most
productive and thus are the most drilled zones. To understand the reservoirs of interest and identify the hydro-
carbon sweet spots, a 3D seismic inversion project was undertaken in the northern part of the Delaware Basin in
2018. We have examined the reservoir characterization exercise for this dataset in two parts. In addition to a
brief description of the geology, we evaluate the challenges faced in performing seismic inversion for character-
izing multistacked plays. The key elements that lend confidence in seismic inversion and the quantitative pre-
dictions made therefrom are well-to-seismic ties, proper data conditioning, robust initial models, and adequate
parameterization of inversion analysis. We examine the limitations of a conventional approach associated with
these individual steps and determine how to overcome them. Later work will first elaborate on the uncertainties
associated with input parameters required for executing rock-physics analysis and then evaluate the proposed
robust statistical approach for defining the different lithofacies.

Introduction
The Permian Basin in west Texas and southeast New

Mexico, encompassing an area of approximately 250
(400 km) miles wide and 300 (480 km) miles long, is
the most prolific of all the basins in the United States.
It has a long history of vertical exploration that dates
back to the 1940s when the more permeable conven-
tional reservoirs were being targeted. Advancements in
horizontal drilling and hydraulic fracturing opened the
low-permeability prospective formations to commercial
production and have made Permian production surge
to the most productive reservoir in the United States.

The Delaware Basin forms the western subbasin of
the Permian, and the Midland Basin forms the eastern
part; both are separated by the Central Basin Platform
(Figure 1). The Delaware and Midland Basins are multi-
stacked plays with production being drawn from differ-
ent zones. Of the various prospective zones in the
Delaware Basin, the Bone Spring and Wolfcamp Forma-
tions are the most prolific and thus the most drilled
zones, the combo often being referred to as the Wolf-
Bone Play. The northern part of the Delaware Basin is
where more horizontal drilling has been carried out in
the recent past compared to the southern part, with
the latter catching up as well. The pocket that seems like
a hot area in the Delaware Basin spans the Ward, Loving,
Winkler, and eastern Reeves Counties.

Due to the presence of the evaporites and anhydrites
in the shallow sections of the Delaware Basin, the qual-
ity of the seismic data appears to be somewhat subop-
timum for the characterization of the zones of interest
below, namely the Bone Spring, Wolfcamp, Barnett, and
Mississippian Formations. Additionally, such charac-
terization is also influenced by lateral and vertical varia-
tion of the embedded seismic wavelets in the data, as
indicated by the well-to-seismic ties, the absence of
shear curves in many of the wells, and the facies com-
plications in the different zones of interest. All of these
factors contribute to making the reservoir characteriza-
tion exercise challenging.

In this study, we try and address the issues men-
tioned above in the workflow that we generated and we
believe that it can be applied to other areas of the
Delaware Basin.

3D seismic data acquisition and processing
A 3D seismic survey was acquired for TGS in the

Delaware Basin in November 2017 covering 407 mi2

(1050 km2) and spanning Ward, Loving, and Winkler
Counties in Northwest Texas (Figure 1). The processing
of the data was completed in April 2018 and picked up for
seismic reservoir characterization that would help in
understanding the reservoirs of interest and prove useful
toward cost-effective drilling.
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The acquisition parameters included 165 ft. (50.3 m)
for the source and receiver intervals, 660 ft. (201.2 m)
for the source-line spacing, 990 ft. (301.8 m) for the
receiver line spacing, a maximum offset of 22,756 ft.
(6936 m), a 2 ms sample interval, and a 5 s record
length, which yielded a bin size of 82.5 ft. × 82.5 ft.
(25.2 × 25.2 m). Two vibrator sweeps of 16 s were used
as the seismic source. The processing of this large data
volume was completed with anisotropic prestack time
migration gathers and stacked volume with 5D interpo-
lation made available for reservoir characterization and
quantitative interpretation.

The location of the 3D seismic survey is indicated in
Figure 1. In Figure 2a, a representative time slice from
the 3D seismic volume (1880 ms) is shown that apprises

the size and shape of the seismic survey. A representa-
tive seismic crossline is shown in Figure 3, giving a
glimpse of the quality of the data. The frequency spectra
of the seismic data in the upper and the lower half time
windows are shown in Figure 2b. Apparently, the fre-
quency bandwidth of the data extends up to 55 Hz in
the upper half window and it reduces to 45 Hz in the
lower half, with the peak frequency at approximately
15 and 10 Hz, respectively.

Geology of the area
The Permian Basin is the largest hydrocarbon-produc-

ing basin in the United States. Named after the geologic
time during which it reached its maximum depth, it has
the world’s thickest deposits of Permian rock. Per the EIA
(Chapa, 2018), the production from this basin exceeded 3
million barrels per day in 2018. The basin is unique in that
it produces from an exceptional number of stacked res-
ervoir zones. The depth of the producing intervals varies
from a few hundred meters to more than 6000 m.

Basin development
The Permian Basin comprises the Midland Basin,

Central Basin Platform, and Delaware Basin (Figure 1).
The deformational sequence of events that controlled
these elements is believed to have begun in the Late
Precambrian, when widespread tectonic activity af-
fected the North American craton that existed at the
time. This led to several high-angle northwest–south-
east-trending faults in the Precambrian basement as
well as regional lineaments of weakness, which were
activated by the later tectonic events. The high-angle
basement faults have been mapped (Hills, 1984), and
a prominent northwest-trending fault zone is seen at
the location of the present Central Basin Platform.

The structural evolution of the Permian Basin can be
divided into three stages. The first stage is the early

period between the Precambrian and the
Mississippian, at which time the Permian
Basin was a shallow marine margin at the
edge of a vast western sea. During this
time, marine carbonates and clastics
were slowly deposited.

The second stage is the Pennsylva-
nian-Permian, when the North American
craton collided with the Gondwana
Land, which represented a superconti-
nent at the time, that later split up into
South America and Africa. This tectonic
activity uplifted the Central Basin Plat-
form and created two asymmetrical
deep basins surrounded by shallow mar-
gins: the Delaware Basin to the west and
the Midland Basin to the east. During
this period; clastics, carbonates, and
deep-water sediments filled the central
parts of both basins, whereas reef com-
plexes grew up along the newly elevated
basin margins.

Figure 1. Index map showing the Delaware Basin and the
location of the 3D seismic survey.

Figure 2. A representative time slice (1880 ms) from the 3D seismic volume.
The inlines run north–south, and the crossline runs approximately east–west.
(b) The representative frequency spectra for the upper half (blue) and the lower
half (green) time window of the seismic data shown in Figures 3.
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The third stage represents the structural stable phase
in the later Permian, at the end of the tectonic activity,
when the basins were slowly shut off from the sea and
sedimentation took place in a calm, slowly subsiding
basinal environment. Evaporation and flooding went
on for millions of years, depositing salt precipitates.
Reef complexes that developed in the shallow areas
were buried by evaporites resulting in an overall se-
quence of vast marine sediments overlaid by tight strata.
The increasing sediment load contributed to basin sub-
sidence, which in turn led to more deposition. Increasing
temperature and pressure initiated catagenesis of the
kerogens. During the Late Permian, the restriction of
the seas became more predominant, resulting in evapo-
rite thicknesses of up to 600 m in the Delaware Basin.

Delaware Basin stratigraphy
The generalized stratigraphic column for the Delaware

Basin is shown in Figure 4a. We begin with the Early
Ordovician because only limited informa-
tion on the Cambrian has been recorded
from the well data in the Delaware Basin.
The Early Ordovician saw deposition of
the Ellenburger Formation under broad
shelf sea conditions. It consists of gray,
medium-grained, crystalline dolomite.
The dolomite is siliceous in the lower
to middle portion and becomes sandier
toward the top. Karstification at the top
of the Ellenburger is readily evident on
the well-log data. Above the Ellenburger,
the Simpson group deposits reach a
greater than 600 m thickness in the sub-
siding basin. It consists of a black shale
interbedded with limestone and coarse-
to fine-grained sands. Overlying the Simp-
son group is the Late OrdovicianMontoya
Formation consisting of cherts and finely
grained crystalline carbonates, which are
dolomitic and calcitic (Keller et al., 1980).

The rise of the sea level during the
Early Silurian unconformably deposited
the carbonate sequence of the Fussel-
man Formation, which is commonly dol-
omitic. During the Late Silurian and
Early Devonian, shelf carbonates were
deposited in shallow marine environ-
ments and dense limestones, cherts, and
black shales were deposited in the
deeper basinal areas (Hill, 1996).

The Middle-to-Late Devonian saw a
transgressive sea flooding; the basin
and black shales of the Woodford For-
mation were deposited during this time.
This fine-grained, highly organic shale
formation is an excellent source rock.
The thickness varies between 30 and
200 m within the basin, with the thickest
deposits found in Winkler County.

The Early-to-Mid Mississippian saw the deposition
of Mississippian Limestone. By the later Mississippian,
the tectonic activity in the area intensified due to the
collision of the Laurasia and Gondwana plates, which
ultimately formed Pangea at the beginning of the Penn-
sylvanian. During the Late Mississippian, the Barnett
Shale, which is hard, siliceous, gray to dark-gray, and
organic-rich, was deposited.

During the Pennsylvanian, tectonism uplifted the ba-
sin flanks causing exposure and erosion, thus deposit-
ing mudstones, sandstones, and carbonates. The effects
of tectonism in the basin endured through the Pennsyl-
vanian, and there are complex lateral and vertical facies
variations in these strata. Formations include the Mor-
row, Atoka, Strawn, Canyon, and Cisco.

By the late Pennsylvanian, the subsidence of the
Delaware Basin increased, resulting in thick Permian
sediments in the basin center, whereas the shelf areas
remained a shallow carbonate bank environment. The

Figure 3. A representative crossline section from the seismic data volume, with
Bone Spring and Mississippian markers tracked on it. The quality of the seismic
data is reasonably good.

Figure 4. (a) Generalized stratigraphy of the Delaware Basin and (b) correlation
of well curves for a deep well on West Kermit 3D with seismic data. As the well
extends down up to the basement, the different lithounits can be read off the
formation tops and located on the seismic section.
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Permianstratahavebeendivided into four seriesbasedon
lithology and fossil content (Adams et al., 1939), namely,
Wolfcampian, Leonardian, Guadalupian, and Ochoan.

During the Wolfcampian, dark shale and limestone
with silt and sand zones characterize the central parts
of the basin and carbonate buildups and banks on the
shelf areas.

The Leonardian saw continuing subsidence of the
Delaware Basin, though somewhat slower than the Wolf-
campian. The Leonardian Series consists of the Bone
Spring Formation, with sequences of dark-gray deep-
marine shales interbedded with sands and black lime-
stones. The thickness of the Bone Spring Formation
varies from 700 to 1000 m, which was deposited in three
different cycles, separated by carbonate sequences.
Whereas the sands were deposited as turbidities during
low sea levels, the black bituminous-rich limestones
were deposited in deep euxinic basinal environments.
These units, in particular the Avalon shale, may contrib-
ute as source rocks in the Delaware Basin.

A thick column of siliciclastics, the DelawareMountain
Group, was deposited over the Bone Spring Formation
during the Guadalupian, with continual subsidence of
the basin. The members of this series are the Brushy
Canyon, Cherry Canyon, and Bell Canyon, which reach
a maximum thickness of 1500 m in the center of the
Delaware Basin. The sandstones in this series make good
reservoirs, and significant oil production has been allo-
cated to the stratigraphic traps in the Bell Canyon. These
basinal deposits are time equivalents to the Capitan and
Goat Seep reef complexes exposed in the Delaware
Mountains.

During the Late Permian, the Delaware Basin was
closed to the marine waters; thus, the Ochoan Series
saw the deposition of the evaporates and thin red beds
that onlapped and eventually buried the Permian reefs.

The members of this series are the Castille (anhydrite),
Salado (halite), Rustler (dolomite), and the Dewey Lake
(continental red bed) Formations.

With the above geologic information in mind, a deep
well was selected over the 3D seismic volume (the lo-
cation is indicated in Figure 4b) and the well curves
were correlated with the seismic data. The different lith-
ounits were identified on the log curves with the avail-
able formation tops, and the equivalent intervals were
identified on the seismic data. We found that whereas
the Mississippian, Bone Spring, and Bell Canyon were
found to be trackable on the seismic data, other hori-
zons such as Wolfcamp (along with its subunits) and
Barnett were not easily trackable. The extent of the
broad zone of interest extends from the Bell Canyon
(close to 800 ms) to Mississippian (close to 2800 ms),
an overall interval of 2 s.

In Figure 5 we focus on the “WolfBone” and its two
main lithounits of interest, i.e., the Bone Spring and the
Wolfcamp zones. The subunits within Bone Spring For-
mation (first, second, and third Bone Spring sands and
carbonates) and Wolfcamp (A, B, and C) are indicated,
and these are prospective and thus represent the zones
of our interest.

Well-to-seismic ties
Tying seismic data to the available well control is a

crucial step in seismic interpretation, an important com-
ponent of seismic reservoir characterization. The subsur-
face reflection coefficient series can be calculated from
the impedance well-log curves, but to generate a 1D syn-
thetic seismogram, the reflectivity must be convolved
with a wavelet. For this purpose, the wavelet can be ex-
tracted from the seismic data statistically or determinis-
tically by comparing it with the seismic trace at the
location of the well. This way, the generated synthetic

seismogram can be correlated with the
seismic data. In practice, this process
comes with its own issues.

Usually, a single wavelet is extracted
in a time window for the generation of
the synthetic seismogram under the
assumption of stationarity of the seismic
data. In such a case, the reflection events
of the seismic may match in the chosen
time window but may not exhibit a good
match above or below that zone. This
mismatch will be particularly empha-
sized if a large time window is chosen for
wavelet extraction because the seismic
data are generally nonstationary due to
the various propagation effects that the
seismic waves go through in the subsur-
face. Added to this is the noise contami-
nation of the seismic data. One of the
propagation effects is anelastic attenua-
tion that makes the seismic data contin-
uously lose frequency and cause changes
in its phase with time. Due to this, the

Figure 5. The stratigraphic column of the Delaware Basin focused on the Bone
Spring and Wolfcamp intervals and its correlation with seismic data.

4 Interpretation / November 2020



“very notion of a single wavelet is not robust” (Margrave,
2013). Correction for the anelastic attenuation propaga-
tion is usually done during the processing of seismic data
by performing inverse-Q filtering, which requires a
knowledge of Q values as a function of time. The appli-
cation of an appropriate Q correction to seismic data
leads to a time-variant amplitude balancing of the data
in frequency and residual phase. But because the re-
quired Q values are usually not available, either in-
verse-Q filtering is not performed at all or a constant-
Q inverse-Q filtering is applied over a large time window
by guessing the Q value for its application. On checking
the processing sequence of the seismic data in hand, it
was found that indeed no inverse-Q filtering had been
performed on the data.

As mentioned above, a single wavelet in a large time
windowwould result in reflection event mismatch above
and below the time window chosen for wavelet extrac-
tion and in the flawed formation calibration as well. If
such a wavelet is used for performing seismic impedance
inversion, it could possibly result in missing geologic fea-
tures or it could subsequently result in inaccurate estima-
tion of rock properties. In the present exercise, because
the time window spanning Bone Spring to Mississippian
is more than 2 s long, the idea of extraction of a single
average seismic wavelet over that window was not con-
sidered advisable, and so it was abandoned.

Seismic wavelets were extracted in overlapping
(10%) time windows at different well locations over
the 3D volume, and their frequency spectra were com-
puted. In Figure 6a–6c, we show a comparison of three
such representative wavelet suites, where we notice a
variation in the temporal as well as the spatial direc-
tions. For simplicity, their average was computed (Fig-
ure 6d), which yielded a single time-varying wavelet and
was used for synthetic seismogram generation at the
different well locations.

The spatial variation in the wavelet
shapes is expected, as the wells to the
right side of the survey, due to their
proximity to the Central Basin Platform,
should exhibit some differences from
the wells to the left side of the survey.
We consider this spatial variation in
the wavelet shape and frequency con-
tent during simultaneous impedance in-
version and will be discussed later.

In Figure 7, we show the input sonic,
density, and gamma-ray well-log curves
in red for well W3 (Figure 6), with its
smoothed version used in the analysis
overlaid in dark blue. The generated
synthetic seismogram in blue is shown
correlated with seismic data in red, with
the red trace in the seismic segment ex-
hibiting the location of the well. The fre-
quency variation on the synthetic traces
is evident, and so also on the seismic
data as expected. A segment of an arbi-

trary line through the 3D seismic volume and passing
through the different wells to the left as indicated in Fig-
ure 6 are exhibited in Figure 8. The synthetic seismo-
grams have been inter-fixed in the arbitrary line in
color. The correlation between them seems to be rea-
sonably good.

Low-frequency model building
For the generation of an impedance field using well-

log data, the usual practice is to apply a low-pass filter
(<10 Hz) to the available sonic well-log curves and use
one or more of the derived curves for generation of the
interval velocity field using extrapolation or interpola-
tion and guided by horizon boundaries. Where more
than one well is used for the generation of the interval
velocity field, usually an inverse-distance weighted
scheme or a process called kriging is used. Such tech-
niques should be used with care because they can pro-
duce artifacts in the form of artificial tongues of sharp
velocity changes that are nongeologic.

Instead of using such a technique that could be
fraught with problems, we make use of a relatively new
approach for the generation of an interval velocity field
that utilizes well-log data and seismic data to establish
the relationship between seismic attributes and the
well-log curves. In this approach, the low-frequency
velocity model generated with a single well is used as
one of the inputs, and some other seismic attribute data
volumes. A multiregression approach (Ray and Chopra,
2016) is used, wherein a target interval velocity log is
modeled as a linear combination of several input attrib-
utes at each sample point. This results in a series of
linear equations that are solved by obtaining a linear-
weighted sum of the input seismic attributes in such
a way that the error between the predicted and the tar-

Figure 6. Base map showing the location of the available wells on the 3D seis-
mic survey. Wavelets were extracted at the well locations indicated with the
dashed arrows in time-varying overlapping windows as are shown in (a-c), along
with their frequency spectra. Notice the change in the shape of the wavelets and
their frequency content from left to right. The average of the time-varying wave-
lets at the wells shown on the base map is shown in (d), which seems to be more
stable.
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get log is minimized. The workflow for the method is
illustrated in Figure 9. In the case at hand, we extended
this approach to include two wells (W3 and W7) so as to
capture the varying geologic trend from east to west.
We determine the correct number of attributes to use
by what is referred to as a cross-validation method
(Hampson et al., 2001). Whereas the additional attrib-
utes always improve the fit to the training data, they
may be useless or worse when applied to new data
not in the training set. In the process
of cross-validation, one well at a time
is excluded from the training data set
and the prediction error is calculated
at that well. The analysis is repeated
as many times as there are wells, each
time leaving out a different well. The to-
tal validation error is the root-mean-
squre (rms) average of the individual er-
rors. Thus, in addition to the low-fre-
quency volume generated with the two
wells as mentioned above, the relative
acoustic impedance volume, seismic
velocity volume, the input seismic and
its band-pass-filtered version 5-10-15-20
were used as inputs. The choices for
the number of seismic attributes as well
as the operator length to be used in the
multilinear regression analysis are
based on prediction error analysis. The
length parameter estimates the target

low-frequency log by using an ensemble of seismic sam-
ples on each attribute. The minimum error was sought
for both seismic attributes and the length parameter,
and it was found to be 5 and 9, respectively, for our ex-
ercise. A cross-validation analysis between the mea-
sured and the predicted impedance formed part of
the workflow. It showed a high correlation coefficient,
which lent more confidence to the whole process. More
details can be found in the references cited above.

Figure 7. Synthetic seismogram generation for well W3. The input well-log curves sonic, density, and gamma ray (in red) and their
smoothed versions in blue are shown to the left. The synthetic seismogram in blue is generated using the sonic and density curves
and the wavelets extracted in overlapping time windows. It is correlated with the seismic traces in red. The correlation coefficient
is 0.708, which is much better than correlating a synthetic seismogram generated with a single wavelet.

Figure 8. An arbitrary line through the seismic volume passing through nine
different wells as shown on the base map (top right). The segment of the arbi-
trary line marked in red and passing through five wells is shown in (a), and the
second half of the arbitrary line marked in blue is shown in (b). Synthetic seismo-
grams generated at the well locations are shown interfixed on the arbitrary line
segments. Notice that the correlation between the two is reasonably good.
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Estimation of shear curves
Along with the compressional velocity and density,

the shear wave velocity is a useful parameter that is re-
quired for the determination of the lithology, pore fluid,
and other geomechanical parameters of the formations
of interest. Seismic data applications such as amplitude
variation with offset (AVO) or prestack simultaneous
impedance inversion require shear velocity information
for generation of input models that are then used for the
determination of shear impedance. This is then carried
forward for the determination of parameters such as
VP/VS, lambda-rho, mu-rho, and E-rho, where E is the
Young’s modulus, which can be used for the determina-
tion of the lithology, fluid, or other rock mechanics
parameters.

The shear-wave velocity is measured directly in the
borehole with a dipole shear tool, but it is usually not
available in all of the wells used for analysis in a project.
The reasons for the nonavailability of the shear log
curves in wells vary from the old wells not having them
to the cost associated with their acquisition. In the in-
terest of economics again, many oil companies do not
continuously record shear log curves over the length
of the wells, where the sonic or other curves may be
acquired. Consequently, shear curves are commonly re-
corded over short intervals in wells.

Different workers have suggested the use of empiri-
cal (Castagna et al., 1985; Greenburg and Castagna,
1992) or theoretical (Krief et al., 1990) relationships
for estimation of shear velocity from the available com-
pressional velocity information. Such computations
were initially suggested for sandstones, which may or
may not be generalized for every subsurface formation.
Also, recognizing the fact that the relationship between
the compressional and shear velocity
may not be a straightforward linear
one, other workers have demonstrated
the use of multilinear regression and ar-
tificial neural networks for shear veloc-
ity well-log estimation by making use of
other well curves. Generally, it is found
that better correlations exist between
the shear curves estimated by way of
these methods and the measured shear
curves used as blind wells, than a simple
application of an empirical relationship
such as Castagna et al. (1985) or Green-
burg and Castagna (1992). Well-log
curves such as sonic, gamma-ray, neu-
tron-porosity, density, and resistivity
are usually available over longer depth
intervals and could be used as input
for the training of neural networks on
log data from one or more wells where
shear curves are available. After cross-
validation analysis, shear curves were
generated over longer intervals or for
the complete estimation in the broad
zone of interest.

For the 3D dataset at hand, three wells (W4, W12,
and W9 in Figure 10) were available with shear curves
in addition to sonic, gamma-ray, resistivity, and poros-
ity, over an interval from Bell Canyon to Mid-Wolfcamp.

Figure 9. Workflow for generating low-frequency model us-
ing multiattribute regression approach. Besides the low-fre-
quency model using wells W3 and W7, the seismic velocity,
relative acoustic impedance derived from the input seismic
data, and band-pass-filtered version of the seismic data were
used for the multilinear regression analysis.

Figure 10. The estimated shear curves in red at three wells (W4, W12, and W9)
overlaid on the measured shear curves in these wells. The depth interval de-
picted on the displays is between the Brushy Canyon and Mid Wolfcamp. The
well-log curves used in the neural net training are the P-wave, gamma-ray, resis-
tivity, and porosity. The average correlation coefficient for the three wells is
0.946, which is very encouraging.
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The neural networks were trained on these wells fol-
lowed by cross-validation analysis. Thereafter, shear
curves were predicted for wells W13 and W2, which
were not used in the training of the neural networks.
Whereas well W13 had measured shear curve from Bell
Canyon to Mid-Wolfcamp, well W2 had this curve for
Mid-Wolfcamp to Barnett.

A good correlation was found between the multilinear
regression-estimated shear velocity and that measured in
the two blind wells as shown in Figure 11. In the present
study, the impedance inversion is to be carried out from
Bone Spring to Mississippian, and because shear curves
are not available over such large intervals, confidence in
the estimated shear curves over Bell Canyon to Mid-
Wolfcamp and from this level to Barnett (Figure 11b)

helped us proceed with the estimation of shear curves
for all of the deep wells that had sonic and density
curves. A crossplot of P- and S-impedancewas generated
for all of the deep wells, wherefrom a linear relationship
was determined, which was then used to generate the
shear-wave low-frequency impedance model for simulta-
neous impedance inversion. Besides this important
application, the estimation of shear information as dis-
cussed above plays a very crucial role in lithologic trend
analysis as discussed later.

Preconditioning of seismic data
The seismic data were conditioned carefully to make

sure that amplitudes are preserved such that their varia-
tion with offset/angle could be used in a meaningful

way. The major processes employed in
the conditioning were supergathering
(3×3), band-pass filtering, random-noise
attenuation, and trim statics, with differ-
ence plots taken at each step to ensure
that no useful signal was distorted or
attenuated. In Figure 12, we show the
comparison of a couple of input gathers
at the location of well W2 before precon-
ditioning, with the equivalent super-
gathers after preconditioning. Notice
the noisy appearance of the input gath-
ers where the somewhat weaker reflec-
tion signal appears to be drowned in the
background of the noise (Figure 12).
The signal-to-noise ratio (S/N) seems
to have been much improved on the
equivalent preconditioned supergather
shown in Figure 12b, and the weaker re-
flections are also clearly seen.

An important quality control during
preconditioning of prestack seismic
data is to ensure that the variation of
amplitude with offset/angle does not
change as the data go through precondi-
tioning. To ensure this, in Figure 13, we
show amplitudes at selected events plot-
ted as a function of offset before and
after preconditioning. We notice that
the scatter of amplitude values after pre-
conditioning is reduced, but the overall
gradient remains the same.

Offset-to-angle transformation
Whereas seismic data are acquired

and processed in the offset domain,
AVO analysis or simultaneous inversion
is performed in the angle domain. Usu-
ally, for the transformation of offsets
into angles, the following relationship
given by Walden (1991) is utilized:

Figure 12. Two representative (a) input seismic gathers and (b) the equivalent
preconditioned supergathers, around the W2 well. The location of the well is
indicated on the map in the inset, which is to the right side of the survey and
close to the Central Basin Platform. Notice the enhancement in the S/N ratio
after conditioning.

Figure 11. (a) The estimated shear curves in red overlaid on the measured
shear curve in black for blind well W13. The depth interval depicted on the dis-
plays is between the Brushy Canyon and Mid Wolfcamp. (b) The estimated shear
curve (in red) overlaid on the measured shear curve (in black) in the other blind
well W2, for the depth interval Mid Wolfcamp to Barnett.
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where V int is the interval velocity obtained from VSmooth
and VSmooth is the spatially varying velocity derived by
smoothing the stacking velocities over a cable length
(Mukhopadhaya and Mallick, 2011).

Per the above equation, it can be concluded that
velocity plays an important role in domain conversions.

Two types of velocities, namely, seismic and well veloc-
ity, are available for analysis. During the processing of
seismic data, the velocity analysis yields the rms veloc-
ity field. This velocity field can then be converted into
an interval velocity field using Dix’s (1955) hyperbolic
approximation relationship, which, besides knowledge
of the rms velocity, requires the two-way traveltime at
zero offset. Usually, the seismic velocity has its own lim-
itations due to limited resolution and not necessarily
being horizon-consistent.

As well velocity is considered as the ground truth
measurement, it is tempting to use it for domain conver-
sion. However, it needs to be decided whether a single
well would be sufficient to represent the whole 3D seis-
mic volume or if more wells need to be considered in
the analysis.

Figure 13. Amplitude analysis at reflection events shown in
dashed red on the seismic gather before conditioning, and in
dashed blue on the preconditioned gather in Figure 12. The
scatter of points after conditioning is reduced, but the overall
gradient remains the same.

Figure 14. Crossplot of the P-velocity and gamma ray for
wells W1 and W8 as indicated on the base map. A more pro-
nounced clustering of points is seen to the left and right halfs
of the crossplot.

Figure 15. The angles of incidence computed using the
(a) seismic interval velocities and (b) velocity field generated
using the available well data via multiattribute regression
analysis, overlaid on seismic offset gathers. The gathers are
selected along an arbitrary line passing through some well in-
dicated at the top of the sections. The sonic velocity curves
have been overlaid at the well locations. Notice the gradual
changes in the angle of incidence in (a), whereas in (b) there
are sharp changes in the angles of incidence seen at the Mis-
sissippian level, and even at the other reflectors coinciding
with the sharp increases on the sonic log.
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As we began analyzing the available well-log data, we
came across an interesting observation. On the cross-
plots of P-velocity and gamma-ray, there were distinct
differences in terms of the cluster density of points, for
wells to the western and eastern side of the survey.
Figure 14 shows a crossplot between the P-velocity
and gamma-ray for a pair of wells to the north, namely,
W1 and W8. The time window for the points crossplot-
ted is Bone Spring to Top Wolfcamp. The point cluster

in red comes from well W1, and those in green come
from well W8. Notice the pronounced separate cluster-
ing of the red and green points on the crossplot. Similar
observations were made for the two other pairs of wells
that were examined. These crossplots suggest signifi-
cant differences in velocity and gamma ray between
the wells on the western and eastern sides of the survey.

Hence, multiple wells should be considered in the
velocity model-building process. But, as mentioned ear-

lier, the use of multiple wells brings its
own problems in the analysis and needs
to be used carefully. Therefore, we fol-
lowed the multiregression approach as
discussed earlier. We thus generated
the angle of incidence values at each
gather using the seismic interval veloc-
ity field and the well interval-velocity
field and compared them by overlaying
them on the seismic offset gathers
shown in Figure 15.

We make an interesting observation
here. Normally, seismic velocity picking
is done by following an increasing trend,
so that the interval velocities obtained
after conversion and smoothing also
exhibit a smooth trend with increasing
time. When such an interval velocity
field is used for offset-to-angle transfor-
mation, and the latter is overlaid on seis-
mic offset gathers in color, even in the
presence of a sharp contrasting inter-
face in the subsurface, the angle of inci-
dence does not exhibit any appropriate
change there. We exhibit this observa-
tion in Figure 15a, where the angle of in-
cidence is overlaid on preconditioned
seismic offset gathers. Notice that, at
the level of the Mississippian marker es-
pecially, there is no change in the angle
of incidence. In Figure 15b, we show the
section equivalent to the one shown in
Figure 15a, where the computed angle
of incidence using well data is overlaid
on the seismic offset gathers. Note that,
not only are there changes seen at the
Mississippian marker, but even at other
levels that coincide with sharp increases
on the impedance log, changes in the an-
gle of incidence are noticed as expected.

Due to this convincing observation,
we went along with the angle-of-inci-
dence computation using well-log data.

Prestack simultaneous impedance
inversion

In simultaneous prestack inversion,
multiple partial-offset or angle substacks
are inverted simultaneously. For each an-
gle stack, a unique wavelet is estimated.

Figure 16. Near-angle stack section along an arbitrary line.

Figure 17. Mid1-angle stack section along the same arbitrary line shown in Fig-
ure 16.

Figure 18. Mid2-angle stack section along the arbitrary line.
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Subsurface low-frequency models for the P-impedance,
S-impedance, and density constrained with the appropri-
ate horizons in the broad zone of interest are constructed
using the approach explained above. The models, wave-
lets, and partial stacks were used as input in the inver-
sion, and the output was P-impedance, S-impedance, and
density. The mathematical formulation for the present
implementation of prestack simultaneous impedance
is described in Hampson et al. (2005).

Quality control of data going into simultaneous
impedance inversion
Dealing with noisy near-angle stack data

Once the angle gathers were gener-
ated for the seismic volume, four differ-
ent angle substacks near (0°–9°),
mid1 (9°–18°), mid2 (18°–27°), and far
(27°–36°) were generated. On examina-
tion, the near-angle stack was found to
be noisier than the other angle stacks.
Per our experience in working with proj-
ects in the Midland Basin, we had made
similar observations. In Figures 16–19,
we exhibit an arbitrary line passing
through the different wells shown therein
from the near-angle stack, mid1, mid2,
and the intercept stacks. Notice the much
lower S/N of the near-angle stack com-
pared with the other two. When noisier
near-angle stacks are used in the imped-
ance inversion, the computed P- and
S-impedance data are found to have a
low S/N. To avoid this, we weighed in
on a couple of options, such as leaving
out the near-angle stack or replacing it
with the intercept stack computed using
a two-term Aki-Richards equation.

We carried out P-impedance inver-
sion when the near-angle stack was used
in the inversion, next when it is not
used, and finally when it is replaced with
the intercept stack, respectively, and
correlated with the different wells. We
found better continuity of events and
correlation with the P-impedance log
curves, when the intercept stack was
used in place of the near-angle stack.

We thus decided to replace the near-
angle stack with the intercept stack in
the simultaneous inversion.

Dealing with different lithological trends in
the zones of interest

Realizing that the zones of our interest
in 3D seismic data at hand span through
the Bone Spring, Wolfcamp, Barnett
Shale, and Mississippian Formations, a
key question to answer is, Which back-
ground trend should be considered in

the inversion? Would a single trend be adequate for de-
fining the background trend? In a thin zone picked up for
impedance inversion where a reservoir does not have fa-
cies complications, the above suggestion is good. How-
ever, facies complications exist in the area of study and
different facies may have different background trends.
Thus, it may not be appropriate to use only a single back-
ground trend in the impedance inversion. To deal with
such a scenario, the following approach is proposed.

We begin with crossplotting the P-impedance, S-
impedance, and density using available well-log data
over the formations of our interest, and we search

Figure 19. Intercept stack section along the arbitrary line.

Figure 20. Lithological trend analysis in terms of crossplots to be used in
impedance inversion in different lithointervals: (a) Bell Canyon to Mississippian,
(b) Bell Canyon to Bone Spring, (c) Bone Springs to Top Wolfcamp, and (d) Top
Wolfcamp to Mississippian. (e) The different trends overlaid on one crossplot.
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for existing trends in the crossplot space for optimiza-
tion of the inversion. We believe that the above
approach is a better way of handling the facies compli-
cation problem rather than following an approach that
starts with different facies trends in the low-frequency
domain. The problem associated with the latter approach
is that of defining the different facies before running the
inversion, a calibrated petrophysical model is required,
which most of the time is not available. Another concern
about this approach is that unconventional plays, such as
the present one, may have different types of shale char-
acteristics (laminated, dispersed, or structural), and it is
not well documented if all these shales possess the same
compaction trend or different ones.

Following our approach, in Figure 20a–20d, we
exhibit crossplots between lnðIPÞ and lnðISÞ as well
as between lnðIPÞ and lnðρÞ for individual intervals com-

prising (1) the overall zone from Bell Canyon to the Mis-
sissippian, (2) Bone Spring to Top Wolfcamp, (3) Bell
Canyon to Bone Spring, and (D) Top Wolfcamp to Mis-
sissippian. When such a crossplot is constructed for the
overall zone (Bell Canyon to Mississippian), four differ-
ent trends can be drawn through the cluster points
(Figure 20e), suggesting a separate trend for each of
the intervals of interest.

This significant observation prompted us to not carry
out simultaneous inversion in a large time window using
a single average rock physics or facies trend. We there-
fore decided to carry out simultaneous impedance inver-
sion in individual lithounits, comprising Bone Spring to
Top Wolfcamp, Top Wolfcamp to Mississippian, etc.,
and merge these impedance intervals into a composite
volume.

In Figure 21, we show a segment of an arbitrary line
passing through two wells (W14 and
W6) drawn from the S-impedance vol-
ume generated using a single trend for
the complete zone shown. In Figure 22,
we show the equivalent section from the
S-impedance volume when different
trends were used for the constitutive in-
tervals. Notice the difference between
them as indicated within the highlighted
pockets. Similar comparisons were car-
ried out for the sections drawn from
the VP/VS data volumes, and valid
differences were noticed.

Spatial variation of wavelets
Earlier, we saw significant differences

between the crossplots generated be-

Figure 21. Inverted S-impedance section along the arbitrary line when a single
trend is used in the inversion analysis.

Figure 22. Inverted S-impedance section along the arbitrary line when different trends are used for different zones in the in-
version analysis.
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tween the P-velocity and gamma ray for pairs of wells,
one to the west and the other to the east. Also, on exam-
ining the different angle stacks, we found spatial changes
in the reflection detail. The segment of the arbitrary line to
the east has higher amplitude reflections, whereas to the
west, low-amplitude reflections are observed. Similarly,
as seen earlier, the extracted wavelets in the wells to
the east and west show variations (Figure 6). All of these
observations are suggestive of the fact that there would
be spatial variations in the seismic wavelets. We therefore
decided to account for this spatial variation in the simul-
taneous impedance inversion as well as the rock-physics
attributes derived therefrom.

Wavelets were extracted at the different wells
marked in red in Figure 6 and interpolated in between
them as provided in the commercial software packages.
In Figures 23 and 24, we show a segment of an arbitrary
line passing through two wells (W14 and W6) and
drawn from VP/VS volumes, generated with a single an-
gle-dependent wavelet (Figure 23) and with a spatial
variation of angle-dependent wavelets (Figure 24). Sim-
ilar sections drawn from S-impedance data volumes
also showed differences at different levels.

Conclusion
Our endeavor in this whole exercise

has been to bring in accuracy in the
different zones constituting the rather
large lithounits from Bone Spring to
the Mississippian.

For this, we have paid attention to
considerations such as addressing the
noise content in the seismic data, ac-
counting for the temporal and spatial
variation of the wavelets embedded in
the data, predicting shear wave curves
using neural network analysis, generat-
ing an accurate multiregression attribute
analysis-based low-frequency model, and
using different facies trends in the indi-
vidual inversion windows.These steps
have addressed the issues that we raised
at the beginning of the reservoir charac-
terization exercise.

We firmly believe that all of these
considerations have added interpreta-
tion value to the products that we have
generated so far, and we make use of
them for generating different characteri-
zation elements such as lithofacies clas-
sification, as discussed in part 2 of this
paper.
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