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Abstract

The discrimination of fluid content and lithology in a reservoir is important because it has a bearing on reservoir
development and its management. Among other things, rock-physics analysis is usually carried out to distinguish
between the lithology and fluid components of a reservoir by way of estimating the volume of clay, water sat-
uration, and porosity using seismic data. Although these rock-physics parameters are easy to compute for conven-
tional plays, there are many uncertainties in their estimation for unconventional plays, especially where multiple
zones need to be characterized simultaneously. We have evaluated such uncertainties with reference to a data set
from the Delaware Basin where the Bone Spring, Wolfcamp, Barnett, and Mississippian Formations are the pro-
spective zones. Attempts at seismic reservoir characterization of these formations have been developed in Part 1
of this paper, where the geologic background of the area of study, the preconditioning of prestack seismic data,
well-log correlation, accounting for the temporal and lateral variation in the seismic wavelets, and building of
robust low-frequency model for prestack simultaneous impedance inversion were determined. We determine the
challenges and the uncertainty in the characterization of the Bone Spring, Wolfcamp, Barnett, and Mississippian
sections and explain how we overcame those. In the light of these uncertainties, we decide that any deterministic
approach for characterization of the target formations of interest may not be appropriate and we build a case for
adopting a robust statistical approach. Making use of neutron porosity and density porosity well-log data in the
formations of interest, we determine how the type of shale, volume of shale, effective porosity, and lithoclassi-
fication can be carried out. Using the available log data, multimineral analysis was also carried out using a
nonlinear optimization approach, which lent support to our facies classification. We then extend this exercise to
derived seismic attributes for determination of the lithofacies volumes and their probabilities, together with their
correlations with the facies information derived from mud log data.

Introduction
The discrimination of fluid content and lithology in a

reservoir plays an important role in reservoir develop-
ment and its management. Gathering this information
prior to horizontal drilling and multistage fracking is es-
sential to develop and exploit an unconventional shale
reservoir. In this regard, the porosity and mineralogy of
shale formations are important in well completion and
productivity (Miller et al., 2011). This conclusion is
based on the fact that the higher the porosity, the better
the reservoir quality. Additionally, brittleness is be-
lieved to be associated with the mineral content of a
shale formation. The presence of quartz mineral in a
shale formation makes it more brittle, whereas more
clay leads to ductileness. The existence of dolomite and
calcite also tends to increase the brittleness of a shale
play (Wang and Gale, 2009). Therefore, the porosity and

mineral content of a formation need to be determined.
Due to the impact of porosity and mineral constituent
on the physical properties of a rock, it should be pos-
sible to extract the porosity and mineralogical informa-
tion of a shale play using the surface seismic response.
Usually, rock-physics analysis is used for extracting
such information. However, the lack of data points such
as limited shear curves as well as huge uncertainties as-
sociated with the input parameters for modeling may
restrict us from using a single rock-physics template.
In this study, we first briefly discuss rock-physics analy-
sis and then we elaborate on the uncertainties by way
of estimating the volume of clay, water saturation, and
porosity for the unconventional plays, especially when
multiple zones need to be characterized simultaneously.
We discuss these estimations here with reference to a
data set from the Delaware Basin where the Bone Spring,
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Wolfcamp, Barnett, and the Mississippian Formations
are the prospective zones. To overcome them, a robust
statistical approach, comprising a graphical crossplot
method and using Bayesian classification, is proposed.

Challenges and uncertainty in the characterization
of shale formations using rock-physics analysis

Rock-physics analysis consists of two parts, namely,
modeling and inversion. As the names suggest, attempts
are first made to model the elastic response using min-
eral fractions, water saturations, and porosity. There-
after, the rock-physics properties mentioned above are
extracted using elastic properties computed using seis-
mic impedance inversion. As per rock physics, the elas-
tic modulus (M) of a rock can be expressed as follows:

1
M

¼
Xn
i

ð1 − ∅ÞVi

Mi
þ ∅

M fluid
: (1)

where Mi are the ith mineral moduli and Vi are the ith
mineral volume fraction.

As can be gauged from the equation above, parame-
ters such as the mineral volume fraction, water satura-
tion, and porosity play an important role in rock-physics
analysis. Using this information, Ødegaard and Avseth
(2004) introduce rock-physics templates as an aid in
interpretation of geology and pore fluid from well-log
data. These templates are essentially crossplots be-
tween the acoustic impedance and VP/VS ratio on which
trends for different lithologies and fluids are modeled
using theoretical principles of rock physics. At the time
of deposition, the water-saturated sandstones will have
high VP/VS due to the very low shear modulus. With pres-
sure, depth, and burial, this ratio will decrease rapidly.
The acoustic impedance for the sandstone will increase
as the grains get compacted and cemented. Similarly,
clays and carbonates will have a higher VP/VS than sand-
stones. In addition to lithology, because the hydro-
carbon saturation increases in these lithologies, the
acoustic impedance andVP/VS will decrease. Such rock-
physics templates work well for conventional reser-
voirs, where estimation of the mineral volume fraction,
porosity, and water saturation is quite easy. Because
many complexities exist in the estimation of these
petrophysical properties for unconventional plays, es-
pecially where multizones need to be characterized si-
multaneously, it is challenging to make use of a single
rock physics template for such unconventional plays.
These are discussed with reference to a data set from
the Delaware Basin discussed above where the Bone
Spring, Wolfcamp, Barnett, and Mississippian Forma-
tions are the prospective zones. Some of the challenges
are discussed below.

Uncertainty in the estimation of the volume of shale
from well log data

Usually, one comes across terms such as “volume
of shale (Vshale)” and “volume of clay (Vclay),” especially

in the calculations of water saturation in shale-bearing
formations such as shaly sands. These are used inter-
changeably, assuming that they are the same, which
they are not. The term Vclay is meant to refer to the clay
mineral volume.

Using gamma-ray curves
Shale rocks contain naturally occurring radioactive

elements such as potassium, uranium, and thorium
and some others. Although potassium isotope is present
in abundance, uranium and thorium isotopes are found
in lesser quantities. Gamma-ray logging tools are used
to detect the gamma-ray emissions from formations
containing the above-stated radioactive elements. Thus,
the gamma-ray log curves can distinguish shale forma-
tions (with higher values) from others such as sand-
stones and carbonates. Not only that, gamma-ray logs
can also be used to determine the volume of shale
present in a formation. Of course, there are other ways
of computing the volume of shale from different well-
log curves, but gamma-ray logs happen to be one of
the methods in which the gamma-ray index is computed
and is defined as IGR = (GRlog−GRmin)/(GRmax−GRmin),
where IGR represents the gamma-ray index, GRlog repre-
sents the gamma-ray reading at any depth, GRmin repre-
sents the minimum gamma-ray value that would cor-
respond to clean sandstone, and GRmax represents the
maximum gamma-ray value that would correspond to
shale. The above calculation, when carried out for a shale
volume assumes, first, that the shale formation is com-
posed of all clay and, second, any increase from clean
sandstone to shale is due to an increase of the clay con-
tent only. Thus, one needs at least one or more point on a
clean sand and, similarly, some points on a real shale
rock in the shale interval under investigation. In the ab-
sence of such values, the computation could fall apart.

As mentioned above, both of these assumptions may
not be satisfied in practice, and the result is an overesti-
mation of the volume of shale. In the interest of bringing
in accuracy in such calculations, various linear and non-
linear corrections have been suggested. Linear scaling
of the volume of shale with a scalar that represents the
average weight percent of clay in shale to nonlinear cor-
rections such as Larinov (1969) for tertiary (young)
rocks or a similar correction for older rocks is in use
(Asquith and Krygowski, 2004).

The volume of shale can be scaled linearly with a sca-
lar that represents the average weight percent of clay
in shale. Empirical nonlinear corrections have also been
suggested by Larionov, one for tertiary or younger rocks,
and another one for older rocks. Some other corrections
by Steiber (1970) and Clavier et al. (1971) have also been
proposed. All of these corrections result in improved es-
timates in certain situations, but inaccuracies still show
up in shaly sand formations. Besides, these empirical
corrections have a drawback in that they require other
independent log curves or core data for calibration.

Figure 1 shows a general graphic that may be
obtained if the volume of shale as determined from
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well-log analysis were plotted againstIGR. The colored
lines represent the different curves obtained after the
corrections proposed by Larionov, Stieber, and Clavier
are applied. When a linear scalar correction for the
volume of clay is applied, the solid black line may be
shifted to a similar line with a lower slope.

In Figure 2, the sonic, density, and gamma-ray curves
from a well on the 3D seismic volume are shown in
tracks 1, 2, and 3. The red curves show the input curves
as such, and the blue curves are their smoothed ver-
sions, which were used in the computations. In track 4,
the computed volume of the shale curve is shown in
red, along with the scaled curve in blue and the curve
with the Stieber correction in black. Notice the large
variations in these curves, which will introduce dis-
crepancies in the computations that they are used in.
Furthermore, the volume of shale was computed by
first subdividing the curves into five basic zones, with
the prominent ones being the Bone Spring, Wolfcamp,
and Barnett/Mississippian intervals. Next, the minimum
and maximum values of the gamma-ray log in the
respective zones were picked up. Finally, the computa-
tions of the gamma-ray index were merged into a single
composite curve, shown in track 5. This turns out to be
different from the other curves shown in track 4.

Using neutron porosity (NPHI) and
density porosity (DPHI) curves

Considering the uncertainties in the volume of shale
estimation using the GR curve, it might be a good idea
to compare it to another shale volume estimation
method. The difference between NPHI and DPHI is an-
other way of estimating the volume of shale for a given
formation because it tends to have a linear relationship
with the clay content in the rock.

Because there is no gas present in the formation, the
NPHI tool is very sensitive to the high hydrogen index
of clays, whereas the density-porosity tool is not. Thus,
a GR independent estimator of shale volume is given by
(Asquith and Krygowski, 2004)

V sh ¼ ∅neutron − ∅density

∅neutronshale − ∅densityshale

: (2)

Following this approach, Vsh was computed for a well
in the Delaware Basin, but it was again found to be dif-
ferent from those seen in track 4 shown in Figure 2.

Thus, we see that there is uncertainty associated
with the determination of the volume of shale depend-
ing on the type of method adopted. As we were given to
understand, the rule of thumb is to use the minimum
value of Vsh estimated using the above approaches or
the one that shows the maximum correlation with
the available X-ray diffraction (XRD) data.

Uncertainty in the determination of water saturation
Any well-log evaluation for estimation of water sat-

uration in shales will depend on the type of shale and
volume. Usually the resistivity log is used to estimate

the water saturation in the undisturbed formations of
interest. Because the resistivity in the matrix is high,
any change in the measured resistivity comes from the
fluid present in the pores of the formation. Water satu-
ration (SW) is the percentage of the pore space filled
with water. If Sw = 0.2, it would imply that 20% of the
fluid in the formation is water, which in turn would sug-
gest that 80% of the fluid is nonconductive or is hydro-
carbons. Archie’s equation (Archie, 1952), given as
follows, is usually used to compute water saturation:

Figure 1. A crossplot showing the variation of the volume of
shale as a function of the gamma-ray index. The solid black
line is the linearly scaled data, and the colored lines represent
the different corrections applied to the data as shown in the
legend.

Figure 2. The sonic, density, and gamma-ray curves from a
well in the Delaware Basin in West Texas and New Mexico,
US, are shown in tracks 1, 2, and 3. The red curves show the
input curves as such, and the blue curves are their smoothed
versions, which were used in the computations. The volume
of the shale curves corrected using scaling and Stieber cor-
rections is shown in track 4. The volume of the shale was
computed by first subdividing the curves into three basic
zones, namely, the Bone Spring, Wolfcamp, and the Barnett/
Mississippian. Next, the minimum and maximum values of
the gamma-ray log in the respective zones were picked up.
Finally, the computations of the gamma-ray index were merged
into a single composite curve, shown in track 5.
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SW ¼
�

a × Rw

RT × ϕm

�
n
; (3)

where a is a constant and its value ranges between 0.5
and 1.5. Often, it is taken as 1. The term m is known as
the cementation exponent, and its value varies between
1.5 and 1.8 in sandstones, and it is 2.0 in limestones,
dolomites, and tight sandstones. The term n is the sat-
uration exponent, which varies between 1.8 and 4.0 but
is usually taken as 2.0. The term Rwis the resistivity of
connate water at formation temperature and can be cal-
culated from spontaneous potential log curve. The term
RT is the measured resistivity (with water and hydrocar-
bons in the pore space). If ϕ, RT, and Rw are known, the
water saturation can be calculated.

Archie’s equation is an empirical relationship that
was derived for clean sandstones, but it also works well
for some nonclean formations. Even though it remains
flexible in its use, it needs to be modified for its appli-
cation to shales and carbonates.

For nonshaly rocks, it is a good idea to consider the
volume of shale in the matrix to account for excess con-
ductivity. The Simandoux equation (Simandoux, 1963)
does that and is given as

SW ¼ a
2
Rw

ϕm

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
VSh

RSh

�
2
þ 4ϕm

aRwRT

s
−
VSh

RSh

�
; (4)

where RSh is the resistivity of shale and is taken from
the resistivity of a nearby pure shale. It thus remains
unclear which equation should be used to determine
the water saturation.

Uncertainty in the determination of porosity
In a given formation, if the bulk density (ρb) is known

(from well log data), and the density of the matrix (ρm)
and the fluid (ρf ) is also known, the porosity of that
formation can be calculated as follows:

ϕ ¼ ρm − ρb
ρm − ρf

; (5)

Usually, a constant value of the matrix density (sand-
stone, limestone, and dolomite) is used for porosity
estimation in the above equation. Such an approach
works well for conventional plays. Besides, in the
Delaware Basin, the formations of interest (Bone Spring,
Wolfcamp, and Barnett) represent a series of multiple
stacked transgressive sequences composed of naturally
fractured, low-porosity interbedded carbonates, clastic
sands, and shales. These formations are composed of
varying amounts of quartz, calcite, dolomite, kerogen,
and clay minerals (illite, albite, and pyrite). Such a mix-
ture of minerals results in grain densities varying from
2.5 to 2.7 g/cm3 and poses a major challenge in the esti-
mation of porosity, water saturation, and organic rich-
ness. An uncertainty range of 0.2 g/cm3 can increase the

error bar on the porosity by 6%, which can drastically
impact resource estimation (Malik et al., 2013).

Kim et al. (2016) also show the importance of the ma-
trix density in porosity determination in the Horn River
Basin in Canada. In the presence of gas, the porosity
calculated using the equation 5 results in a higher value
for the reservoir when the density log data are used be-
cause the density calculation itself is affected by the
presence of gas. This calls for the use of a lower value
of fluid density in the equation. Even when the ele-
mental capture spectroscopy (ECS)-determined grain-
density log is used, and if any value greater than zero
is used for fluid density, the porosity computation using
the above equation results in an overestimated value.
Therefore, this questions the validity of the equation for
the determination of porosity in the exercise at hand.

Sondergeld et al. (2010) suggest the use of total or-
ganic carbon (TOC) in the porosity computation and
propose the following equation:

ϕ ¼
ρm − ρb

�
ρm

WTOC
ρTOC

−WTOC þ 1

�

ρm − ρf þWTOC × ρf ×
�
1 − ρm

ρTOC

� ; (6)

where ρTOCis the organic carbon density (in g/cm3) and
WTOC is the weight fraction of TOC from log measure-
ments. Again, taking the ECS grain-density log values
and TOC from the uranium log, the use of this equation
does not guarantee an accurate computation for the
value of porosity as shown by Kim et al. (2016). Thus,
the computation of porosity is not a straightforward
exercise.

As mentioned before, the characterization of uncon-
ventional reservoirs such as the ones at hand requires
more information such as mineralogy from XRD, geo-
chemical logs, triple-combo logs, nuclear magnetic res-
onance, spectral gamma ray, dipole sonic, and image-
log curves, which are usually not available or provided.
The availability of such information can certainly in-
crease confidence in the results, and it is something that
should be taken seriously.

With the detailed descriptions given above for the
challenges and the large uncertainties in the estimation
of the volume of shale, porosity, and water saturation,
an uncalibrated petrophysical/rock-physics model in
the complex depositional environment of the Delaware
Basin will lead to large uncertainties in the computed
rock-physics properties. The inherent implication in
this conclusion is that any deterministic approach
adopted for characterization of the target formations
in the Delaware Basin may not be appropriate.

Therefore, consideration of a statistical approach or
petrophysical approach is highly recommended for that
purpose. An attempt has been made to implement such
a petrophysical workflow to the Delaware Basin in the
literature (Del Moro et al., 2020). The authors consider
a single zone for reservoir characterization in their
analysis, whereas a broad zone of interest has been
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characterized with lithofacies analysis using a statisti-
cal approach in our analysis and is discussed next.

Proposed statistical approach
As stated above, the formations of our interest

(Bone Spring, Wolfcamp, and Barnett) represent a
series of multiple transgressive sequences composed of
naturally fractured, low porosity, interbedded carbon-
ates, clastic sands, and shales. Consequently, it would
help to understand the different types of facies and how
to identify them in the Delaware Basin. The type, vol-
ume of shale, and effective porosity of a formation can
be determined using well-log data with a graphical
crossplot method as has been demonstrated by Ghorab
et al. (2008) and Alaskari and Roozmeh (2017). The au-
thors attempt to distinguish between laminated, dispersed,
and structural shale types among other applications.

There are two different ways in which clays/shales
are laid down. First, as sediments are laid down, clay
is transported with sandstones, giving a laminar type
of shale where clay particles are trapped within the
sandstone grains (Figure 3a), and they do not form part
of any effective pore network. When multiple cycles of
deposition have taken place under fluc-
tuating energy levels (higher energies
depositing sand grains between lower
energy remnants of clay minerals and
silt grains), laminar clays or shales are
deposited in a form as distinct thin
layers within a sandstone deposition.

The second way is when clays pre-
cipitate in solution. Dispersed clays fall
into this category. The clay particles are
situated within the pore system, and,
due to their large surface area, they have
a significant impact on the chemical sen-
sitivity and petrophysical properties of
the sandstone that is out of line with
their volumetric proportion (Figure 3b).

Structural clays or shales consist of shale nodules or
lithified clay fragments, intermixed with grains of sand,
and they form part of the overall matrix, with the clay
and sand grain sizes being comparable (Figure 3c).

The type, volume of shale, and effective porosity of a
formation can be determined using well-log data with
the interpretation of the graphical crossplot method de-
scribed below.

A crossplot of NPHI (ϕN) and density-porosity (ϕD)
data for any shale interval would look like the one
shown in Figure 4.

Three points are marked on this crossplot, namely,
point F, which represents fluid or water point, where
ϕD = ϕN = 50%; point M, which represents the matrix
point, where ϕD = ϕN = 0 (which will be true if the
neutron and density tools are calibrated); and the shale
point SH. The location of SH represents the shaliest
segment of the well and will vary from one well to an-
other. The porosity values on both axes do not exceed
0.5 because these are the maximum limit of porosity

realizable (Glover, 2014). The well-data points from the
ϕD and ϕN curves entering the crossplot need to be
corrected for the presence of hydrocarbons. In Figure 4,
the well-data points from the ϕDand ϕN curves re-
presenting clean formations will fall along line MF,
and their location will indicate the effective porosity.
Points along line M-SH will have ϕe = 0 and represent
the volume of shale with zero effective porosity. Based
on the characteristics of each of the shale types, the
data points from the laminated shale will fall along or
around line LS-SH, the dispersed shale points along or
around line DIS, and the structural shale points along
or around line STR.

Application of the statistical approach for
characterization of unconventional plays

The neutron-density and density-porosity logs were
picked up for five deep wells (W1-W5) covering our
broad zone of interest and crossplotted for the interval,
Bone Spring to Woodford Shale, as shown in Figures 5
and 6. The cluster of data points is colored according to
their density in Figure 5 and to the gamma-ray values in
Figure 6. Overlaid over the cluster points is the M-F-SH

Figure 3. Different types of shales. (a) Laminated shale where thin layers of clay
may be interspersed between layers of sand, (b) dispersed shale, where clay may
be interspersed throughout the sand by filling the pore spaces between the sand
grains or forming a coating on the sand grains, and (c) structural shale, where
clay grains or nodules form part of the formation matrix.

Figure 4. Crossplot between neutron density (ϕN) and den-
sity porosity (ϕD) for the formation interval of interest. The
triangle shown among the shale point, matrix point, and
the fluid/water point can be used estimating the type of shale,
volume of shale, and effective porosity in the interval of inter-
est. (Modified after Ghorab et al., 2008.)
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triangle from Figure 4. Notice that the well-log data
points are enclosed by the theoretical triangle, which
lends confidence in using the graphical crossplot method.

Based on the interpretation of this triangle, the
points close to the apex M and SH must be coming from
the limestone matrix and shaly formations, respec-
tively. Outside the apex M, the data points must be com-
ing from a formation that is rich in sandstones. Points
along the clean carbonate formation line might be com-
ing from a combination of limestone, sandstone, and

shale. To make sure where these points are coming
from, first the data points are enclosed with different
polygons and then they get back projected on the well
log curve as shown in Figure 7. It is observed that the
data points along the clean limestone line are coming
from an interval Bone Spring to top Wolfcamp, which
is expected to be dominated by carbonate content.
The data points close to the apex SH are exhibited
by the Barnett/Woodford levels, which are clay-rich
shales as expected. This crossplot was insightful be-

cause it confirmed our prior geologic
information about the different intervals
of interest. Thereafter, attempt was
made to fine tune the position of the pol-
ygons on the crossplot, and with that
done to our satisfaction, the NPHI and
DPHI cutoff values were assigned to the
different polygons. Imposition of these
restrictions is based on the interpreta-
tion and thus is subjective. The chosen
polygons spanned the main zones of our
interest and thus helped us focus on
them rather than the whole population
of data points on the crossplot.

Because an effort has been made to
characterize the different facies from
well data between the Bone Spring and
Mississippian markers using different
polygons, it is possible that a wide range
of values within each polygon may
represent the same facies. Understand-
ably, the cluster points closer to the
center within each polygon for the same
facies should be more probable than

Figure 5. Crossplot between the NPHI and DPHI for the lithointerval Bone
Springs to Woodford Shale. The data points are colored based on the density
values. Apex M and SH must be coming from limestone matrix and shaly forma-
tions, respectively. Outside the apex M, the data points must be coming from a
formation that is rich in sandstones. Points along the clean formation might be
coming from a combination of limestone, sandstone, and shale.

Figure 6. Crossplot between NPHI and DPHI for the lithoin-
terval Bone Springs to Woodford Shale. The data points are
colored based on the gamma-ray values. Apexes M and SH
must be coming from limestone matrix and shaly formations,
respectively. Outside apex M, the data points must be coming
from a formation that is rich in sandstone. Points along the
clean formation might be coming from a combination of lime-
stone, sandstone, and shale.

Figure 7. Back projection of crossplot cluster points en-
closed in different-colored polygons onto the vertical well-
log curves. We notice that the data points within the triangle
(in Figure 6) pertain to shale intervals at the Wolfcamp and
Barnett/Woodford levels.
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the points away from the center. Consequently, an ap-
proach that accounts for the uncertainties associated
with reservoir characterization in the different facies
is followed. This work entails the Bayesian classifica-
tion approach and provides a facies model reflecting
the quality of the lithounits and a related uncertainty
analysis.

For executing the Bayesian approach, the interpreta-
tion of these different restricted-value polygons is ex-
hibited in Figure 8 in terms of their lithoclassification
as seen on the legend shown therein. The probability
density functions for these individual clusters were gen-
erated using Gaussian ellipses (Do, 2008), and they are
also shown overlaid in different colors. Based on all of
this and prior information, the interpretation of the lith-
ocolumn for the different wells is shown in Figure 9.

Once this was done, the next question we tried to
address was if it is possible to see such lithoclassifi-
cation on the seismically derived attribute crossplot
space. For doing so, various combinations of parameters
such as (P-impedance versus S-impedance, lambda-
rho versus mu-rho, P-impedance versus rho, etc.) were

considered. The crossplots of P-impedance versus
S-impedance, P-impedance-VPVS ratio, and lambda-rho
versus mu-rho are shown in Figure 10a–10c, respectively.
Notice that it is easy to differentiate between different
lithologies (carbonate, sand, and shale) based on the seis-
mically derived attributes; however, it is not possible to
differentiate between shale characteristics, which might
be useful for well completion processes. This last con-
sideration comes from the fact that different shales frac
differently.

Although the above results were found to be quite
encouraging, further discussions were carried out with
our geologist and petrophysicist to get their take on the
defined facies. Interestingly, after examining the de-
scribed facies closely, they opined that in the absence
of core samples and their descriptions, it may be diffi-
cult to confirm the interpretation of laminated and dis-
persed shales. Consequently, we did not pursue the
exercise of making this distinction. Rather, we focused
on looking at facies computation and interpretation.

We first subdivided our broad zone of interest into
three different parts, namely, the Bone Spring to top

Wolfcamp, top Wolfcamp to middle Wolf-
camp, and middle Wolfcamp to Mississip-
pian, and we crossplotted the NPHI and
DPHI, color-coded with the gamma ray
as shown in Figure 11. The cluster points
on each of the crossplots exhibit different
trends implying different facies.

Next, a crossplot of NPHI and DPHI
was generated over the Bone Spring
to Mississippian interval and data points
were color coded with resistivity as
shown in Figure 12. The basic under-
standing of GR and resistivity curves
and the fundamentals of the above
graphical method make it possible to
understand and describe the different
facies further that are assigned to the

Figure 8. Interpretation of lithoclassification based on well-log neutron and
density porosity of five deep wells by restricting their values. The probability
density functions for the individual clusters are also shown overlaid.

Figure 9. Interpretation of the lithocolumn for different wells based on the lithoclassification carried out as shown in Figure 8.
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different clusters in the DPHI and NPHI crossplot. Ac-
cording to the interpretation of graphical method, the
points close to the apex M and SH must be coming from
the limestone matrix and shaly formations, respec-
tively, as interpreted earlier. Points along the clean car-
bonate formation line have been interpreted as tight
limestone, moderate-quality limestone, and high-quality

limestone. Additionally, points along line MSH have
been interpreted as coming from shaly limestone, limy
shale, and clay-rich shale. Similarly, the points along
line SH-LS are interpreted as coming from organic-
rich shale. Based on mud log interpretation as well as
the regional study for the area carried out by Franseen
et al. (2016), the moderate-quality and high-quality lime-

stone facies were renamed as calcare-
ous mudstone and siliceous mudstone,
respectively.

To examine this, next, chunks of the
data points on the crossplots were en-
closed in different-colored polygons
as shown in Figure 12 and back pro-
jected onto the vertical log curves as
shown in Figure 13. The observation
that three different facies enclosed by
the polygons in cyan, yellow, and yel-
lowish-green represent the Bone Spring
Formation is confirmed because it
agrees with a similar conclusion arrived
at by Franseen et al. (2016). The clay-
rich shale and the organic-rich shale
facies seem to be coming from the
Barnett-to-Mississippian interval. The
shaly limestone and limy shale facies
are observed within the Wolfcamp zone.

Again, for executing the Bayesian ap-
proach, the cutoff values of DPHI and
NPHI well curves were used to define
the different lithofacies for the broad
zone from Bone Spring to Mississippian.
The eight facies as interpreted earlier are
shown by the different-colored ellipses in
Figure 14. The probability density func-
tions for these individual clusters are also
shown overlaid in different colors.

Supportive analysis
It may be pointed out that we have

followed a qualitative approach in defin-
ing different facies such as shaly lime
and limy shale. The facies classification
nomenclature would benefit immensely
if it were supported by some indepen-
dent analysis. To accomplish this, multi-
mineral analysis was carried out on
well-log data. According to this analysis,
the response of any log can be described
as a linear combination of individual log
responses to each constituent weighted
by the fraction of that constituent. This
modeling yields a series of linear equa-
tions, which are solved for obtaining
the volume fraction of different minerals
in such a way that the error between the
modeled and measured logs is minimized
in a least-squares sense. Being aware
that the linearity assumption does not

Figure 10. Crossplot of (a) P-impedance versus S-impedance, (b) AI versus VPVS

ratio, and (c) lambda-rho versusmu-rho showing that based on the seismically
derived attributes, it would be easy to distinguish between different lithologies
(carbonate, sand, and shale), but it may be difficult to differentiate between shale
characteristics, which might be useful for well completion processes.

Figure 11. Crossplotting NPHI versus DPHI over the interval from (a) Bone
Spring to top Wolfcamp, (b) top Wolfcamp to middle Wolfcamp, and (c) middle
Wolfcamp to Mississippian illustrates different trends within different intervals.
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hold true in areas of complex lithologies such as seen in
the Delaware Basin, a nonlinear optimization approach
described by Michelena and Godbey (2018) was used to
estimate volume fraction of individual minerals ex-
pected in the basin.

The resistivity, gamma-ray, NPHI, sonic, density, and
photoelectric (PEF) well-log curves were considered in
the multimineral analysis. Because the PEF curves re-
quired for lithology identification (reference) were not
available for all of the wells, curves from one deep well
(W1) and four not-so-deep wells were used in the multi-
mineral analysis. Regarding the results, the analysis
yields log curves for the volume fraction of calcite, do-
lomite, quartz, shale, and kerogen along with the effec-
tive porosity.

We made use of the different mineral volume frac-
tions and porosity curves to crossplot them in pairs
for the facies defined earlier as shown in Figure 15.
Interestingly, in going from tight limestone to siliceous
mudstone, the porosity is expected to increase, and the
calcite content must decrease. Both of these trends are
noticed in Figure 15a and 15b. Similarly, the volume
fraction of shale must increase in going from tight
limestone to clay-rich shale, which is again noticed in
Figure 15c. Thus, we notice that the facies defined
based on the graphical method interpretation follow the
expected trends in terms of porosity, volume fraction
of shale, and calcite estimated using an independent
multimineral computation approach. Such a similarity
between these two different types of analysis lends con-
fidence in the facies classification.

Facies mapping on ternary diagram
After the above encouraging analysis, an attempt

was made to map the facies described above onto a
ternary diagram, often used by geologists for facies clas-
sification. Built on relationships between core samples
and log measurements, ternary diagram mudstone clas-
sification schemes have been introduced (sCore; Glaser
et al., 2013; Gamero-Diaz et al., 2013). Using normalized
proportions of clay, quartz (including feldspar andmica),
and carbonate as the end members, a ternary diagram
can be constructed, which defines 16 classes of mud-
stones, whereby any given sample can be discriminated
as an argillaceous (clay-rich), siliceous or carbonate
mudstone. Variations of such ternary diagram classifica-
tion schemes have also been used for identification of
lithofacies in sandstone reservoirs (Gaafar and Altunbay,
2019). With volume fractions of different minerals ob-
tained from the multimineral analysis, their absolute val-
ues associated with the defined facies were tabulated as
shown in Table 1.

Based on their volume fraction, each of the facies
gets mapped on to the ternary diagram as shown in
Figure 16. The organic-rich shale is not defined on
the ternary plot and is taken as a match for the high-
kerogen zone described earlier. Based on their location
on the ternary plot, we updated the facies nomencla-
ture defined earlier to the one shown in Figure 16. This

exercise helped us redefine our facies classification,
which now sounds more geologic and hence more
meaningful.

Lithofacies computation from
seismic data

All of the forgoing analysis suggests that NPHI and
DPHI are essential for the characterization of our zone
of interest. Therefore, we need to derive these attrib-
utes from seismic data. In most cases, density porosity
is derived from density; thus, it might be a good ap-
proach to compute density first and then transform
it into density porosity. The density estimation from

Figure 12. Crossplot between NPHI and DPHI for the lithoin-
terval Bone Springs to Mississippian. The data points are col-
ored based on the resistivity values. Based on the information
gathered so far, a nomenclature is assigned to the cluster
points as indicated.

Figure 13. Back projection of crossplot cluster points en-
closed in different-colored polygons (in Figure 12) onto the
vertical well-log curves. We notice that the data points along
the clean formation line are coming from the Bone Spring in-
terval and that the clay-rich and organic-rich shale are coming
from the Barnett Formation. A mixed lithology of shale and
limestone is noticed in Wolfcamp.
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seismic data requires either data with large offsets or
multicomponent seismic data, and both of these were
not available. A neural-network approach (multiattri-
bute regression analysis) is an alternative way of com-
puting density (Sharma et al., 2018).

With regard to the NPHI, a strong nonlinear relation-
ship (89%) was found to exist between the NPHI and
P-impedance, with some uncertainty due to the spread
of cluster points as shown in Figure 17. In view of this
strong correlation and considering the reliable estima-
tion of impedance from seismic data besides the availabil-
ity of sparsely uniform well control in terms of density
porosity over the 3D seismic volume, we performed
seismic impedance inversion first (described in part 1
of this paper) followed by a multiattribute regression
approach thereafter to achieve our goal of obtaining
NPHI and DPHI from seismic data.

After gaining confidence in the deliverables of pre-
stack impedance inversion, the P-impedance volume

is transformed into the NPHI volume us-
ing the relationship shown in Figure 17.
Next, the relevant attributes for current
study, namely, P-impedance, S-imped-
ance, lambda-rho, mu-rho, E-rho, and
Poisson’s ratio volumes are picked up.
A combination of these different attri-
butes is input to the multiattribute re-
gression process to predict the density
porosity by following adequate training
and validation process (Hampson et al.,
2001; Leiphart and Hart, 2001). An oper-
ator length of nine samples exhibited
the minimum validation error with six
attributes for density-porosity determi-
nation. The six seismic attributes used
for training the neural networks were
Poisson’s ratio, E-rho, relative imped-
ance, absolute P-impedance, S-imped-
ance, and a filtered version of the
input seismic data. A similar approach
has been used to predict gamma-
ray and density-porosity volumes for
TOC estimation and fracture characteri-
zation of Barnett Shale (Aguilar and
Verma, 2014).

A representative crossplot from the
predicted DPHI and NPHI volumes
along an arbitrary line that passes
through different wells is shown in Fig-
ure 18. The crossplot in Figure 18a is
from the well data and has been shown
in Figure 6. An equivalent crossplot from
the neural network-generated attributes
is shown in Figure 18b. A striking simi-
larity is seen between the two cross-
plots, which lends confidence in the
approach that has been used.

Using the probability distribution
function of each facies generated earlier

Figure 15. Crossplot of the effective porosity with the (a) volume of shale
(b) volume of calcite, and (c) volume of shale versus volume of calcite com-
puted using multimineral analysis color coded by facies defined based on the
graphical method. Notice how well the multimineral analysis based on the vol-
ume of shale, volume of calcite and effective porosity supports our graphical
method interpretation.

Figure 16. The mapping of facies on ternary diagram.

Figure 14. Interpretation of lithoclassification based on well-
log neutron and density porosity by restricting their values.
The probability density functions for the individual clusters
are also shown overlaid.
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as shown in Figure 14, Bayesian classification was fol-
lowed for generating the facies volume and probability
volume of each facies. A representative section through
the facies volume passing through the different wells
is shown in Figure 19. We notice straightaway that

the carbonate content in Bone Spring increases as
we go from the western to the eastern part of the line,
which is in accordance with our expectation and geo-
logic knowledge of the area.

A clay-rich shale facies seen on the upper part of the
Barnett, organic-rich shale seen on the lower portion of
the Barnett, which might be prospective, and siliceous
shale and siltstone2 facies are seen in the interval from
Wolfcamp to Barnett. In the Bone Spring interval, a mix
of tight limestone, siltstone1, and siliceous carbonate is
noticed. The yellow color representing the siliceous
mudstone seen on the western side of Wolfcamp is
probably the production zone being tapped at the
present time. To gain confidence in the facies analysis
described thus far, we sought the available mud-log
data for the well W8 (a blind well for this analysis)
on the 3D seismic volume, which is described below.
The mud log contains the geologic record of the drilled
hole that includes a description of the well cuttings, oil
and gas shows, formation tops, and drill time. The rock
cuttings are examined under a microscope to under-
stand the rock type and such description of the different
kinds of rocks, their texture, and bedding is useful
for us.

In Figure 19, the lithostrips obtained for two of the
wells are overlaid over the facies section. Notice the
one-to-one correlation between the shale noticed in
the Barnett and Wolfcamp units and more siltstone1
and siliceous carbonate with tight limestone in the
Bone Spring interval. The presence of siliceous car-
bonate in the Wolfcamp unit on the well to the west
correlates well with the prospective zone (the green
arrow) that is interpreted based on the seismic facies
analysis. Similarly, more carbonate is observed in the
Bone Spring (the light blue arrow) in the well to the
east. The presence of siltstone2 (with greater carbon-
ate content) and siliceous shale (with little carbonate)
correlates well with the mud log lithostrip indicated
with the magenta and orange arrows at blind well.
Such a correlation between the seismic facies and
the independent information coming from the mud-
log records lends confidence in the analysis car-
ried out.

Figure 17. Crossplotting between NPHI and
P-impedance color coded with GR. A strong relationship is
seen to exist between the P-impedance and NPHI.

Table 1. The absolute value of the volume fraction of
different minerals computed using multimineral
analysis associated with different facies interpreted
based on the graphical method.

Facies Vsh Vquartz Vcarbonate

Tight limestone 0%–20% 0%–20% 40%–80%

Calcareous mudstone 0%–30% 0%–30% 0%–50%

Siliceous mudstone 0%–20% 0%–40% 0%–50%

Shaly limestone 30%–40% 30%–40% 0%–40%

Limy shale 45%–55% 25%–35% 0%–20%

Clay-rich shale 50%–75% 20%–30% 0%–10%

Figure 18. Equivalent crossplots of NPHI
and DPHI for the Bone Springs to Woodford
Shale interval from (a) well data and (b) seis-
mically derived data. A resemblance between
them lends the confidence in the inverted
attributes.

Interpretation / November 2020 11



Conclusion
We have attempted to highlight the uncertainties in

the estimation of the volume of shale, water saturation,
and porosity from well-log data for unconventional res-
ervoirs. In view of these uncertainties, we conclude that
any deterministic approach (a single rock-physics
model) for characterization of the target formations
may not be appropriate and that a robust statistical ap-
proach should be adopted. In doing so, we first demon-
strated that the interpretation of different types of
lithofacies could be carried out on a crossplot of density
porosity against NPHI from well-log data. Such a lithof-
acies classification could be supported by independent
multimineral analysis on log data in terms of effective
porosity and the volume fraction of different minerals.
Thereafter, we carried out a Bayesian classification ap-
proach using cutoff values of DPHI and NPHI for differ-
ent facies in the broad zone of interest from Bone
Spring to Mississippian. Once the DPHI and NPHI attrib-
utes were determined from seismic data with the help
of neutral networks, seismic lithofacies volume was
generated, which showed a good correlation with the
lithofacies interpretation carried out on mud log data.
Such a robust statistical approach holds promise for
its application in unconventional plays.
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