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Abstract

The Triassic-Jurassic deep sandstone reservoirs in onshore Denmark are known geothermal targets that can
be exploited for sustainable and green energy for the next several decades. The economic development of such
resources requires accurate characterization of the sandstone reservoir properties, namely, volume of clay, poros-
ity, and permeability. The classic approach to achieving such objectives has been to integrate well-log and pre-
stack seismic data with geologic information to obtain facies and reservoir property predictions in a Bayesian
framework. Using this prestack inversion approach, we can obtain superior spatial and temporal variations within
the target formation. We then examined whether unsupervised facies classification in the target units can provide
additional information. We evaluated several machine learning techniques and found that generative topographic
mapping further subdivided intervals mapped by the Bayesian framework into additional subunits.

Introduction
The estimated hydrocarbon reserves around the

world when produced can keep us going for the next
several decades, but scientific records and our own ex-
periences are enough evidence that climate change is
indeed happening. Attempts at addressing it are sugges-
tive of energy extraction from nonfossil fuels. One such
resource is the natural heat of the earth or geothermal
energy.

There are different ways in which the heat of the
earth can be used. We hear of natural hot springs at cer-
tain places, where somehow, groundwater is emerging
through the porous and fractured rocks after making
contact with the deeper and hotter layers of the earth’s
crust. Hot water geysers spout columns of hot water
and steam through vents in earth’s surface. Under suit-
able conditions, the geothermal system in place can be
enhanced to our advantage. For instance, a fluid circu-
lation cycle could be set up by injecting (pumping) cold
water through a well to the depth of say a hot sandstone
reservoir rock and be drawn up as hot water through
another well a certain distance away. Of course, such
an initiative requires the right kind of rocks through
which a steady water-flow rate can be established. Such
geothermally heated water (usually >75°C) is being
used for heating buildings constructed in their proxim-
ity, in which hot water from the producing well trans-
fers the heat to the housing heating grid.

The feasibility and success of such a geothermal res-
ervoir are dependent on finding the candidate reservoir
rock that will allow the water to percolate through. This
would need good porosity and permeability, the pres-
ence or absence of faults and fractures, high enough
temperature, and knowledge of the structural compo-
nent of the target reservoir.

The Danish subsurface hosts low-enthalpy reservoirs
(40°C–80°C) of Jurassic, Triassic, and Cretaceous age.
The geothermal energy has the potential of supplying
district heating for hundreds of years into the future,
and three geothermal plants have been set up in Den-
mark. The Thisted geothermal plant commissioned in
1984 (Figure 1) supplies saline water at 43°C from
the Gassum reservoir at a depth of 1.25 km to 2000 res-
idential units with district heating. The Margretheholm
plant, in operation since 2005, supplies saline water at
48°C from the Bunter sandstone reservoir at a depth of
2.6 km and has the capacity for heating 4500 residential
units. The third plant, Sønderborg, began operation in
2013 and pumps water from the Gassum sandstone
at a depth of 1.2 km. Each of the plants has one injection
well and one production well producing heat from the
sandstone reservoirs through heat exchanger pumps.

Bredesen et al. (2020) and Feng et al. (2020) discuss
the seismic characterization of a Triassic-Jurassic deep
geothermal sandstone reservoir, north of Copenhagen,
in an area near Hillerød in northeast Zealand, onshore
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Denmark (Figure 1). The data available for this study
were a 2D seismic survey from 2013 (comprising five
profiles with 3 km offset, designed for structural map-
ping, and outlining potential geothermal reservoirs), a
local well (Karlebo-1A), and a few regional wells that
penetrate the reservoir of interest. The more recent geo-
logic and petrophysical analysis were also collated and
made use of for impedance inversion and rock-physics
modeling (Nielsen et al., 2004; Weibel et al., 2017).

The target geothermal interval is the sandstone-
dominated Upper Triassic-Lower Jurassic Gassum For-
mation, which is being exploited for geothermal
production and storage in Denmark (Kristensen et al.,
2016; Vosgerau et al., 2017). Figure 2 displays seismic
profile 5 with geologic interpretation with the Karlebo-
1A well projection overlaid on it. The Lower Jurassic
sandstone unit that overlies the Gassum Formation is
a secondary geothermal target. Both these units lie at
a depth of approximately 2 km below the ground level.
Above the Lower Jurassic sandstone unit is the Fjerrit-
slev Formation that is dominated by marine mudstones
and shales, which is the regional cap rock. The Lower
Cretaceous sandstone unit sits on top of the Fjerritslev
Formation, and, in turn, it is overlaid by the high-velocity
chalk formation that generates interfering multiples and
convertedwaves, which makes processing of the seismic
data challenging. Below the Gassum Formation is the
impermeable mudstones of the Vinding, Oddesund,
and other older formations (Weibel et al., 2017). The ob-
servations from Karlebo-1A well indicate that although
the Lower Jurassic reservoir unit (LJRU)
is a homogeneous unit, the Gassum sand-
stone contains interlacing of thinly
bedded shale. The reservoir temperature
ranges between 50°C and 65°C in the tar-
get interval.

The exploration well Karlebo-1A
drilled for hydrocarbon exploration is
located approximately 140 m from pro-
file 5. It has a limited number of log
curves (gamma ray, sonic, and poros-
ity), whereas a nearby well, Margerthe-
holm-1A, penetrates the same set of
formations as the Karlebo-1A well

and contains a complete set of log curves. Thus,
the latter well was used to derive empirical relations
between pairs of variables and was used to determine
additional curves such as the density, shear sonic, and
shale volume for the Karlebo-1A well.

Bredesen et al. (2020) demonstrate the seismic res-
ervoir characterization of these different lithounits by
carrying out prestack simultaneous impedance inver-
sion and predicting facies and reservoir properties in
a Bayesian framework. Their results demonstrate that
several porous and clean water-bearing sandstones
are potential high-quality geothermal reservoirs within
the two target layers, namely, the LJRU and the Gassum
Formation. Feng et al. (2020) obtain similar reservoir
quality predictions using the same seismic inversion
data as input to a new system of artificial neural
networks-hidden Markov models. In general, the LJRU
exhibits a more promising reservoir quality in terms of
high porosity, permeability, and low shale content com-
pared to the Gassum Formation. Given the availability
and quality of the data and geologic complexities, the
results are influenced by high uncertainty, but they
highlighted the possible target layers.

We decided to repeat the prestack simultaneous
impedance inversion on the same data by following a
somewhat different workflow, and instead of the Bayesian
classification for facies prediction, we made use of the
available unsupervised machine learning (ML) techniques
for facies classification and assess their comparison. Our
results indicate a superior impedance inversion product

Figure 1. (a) The location of the three geothermal plants that are operational in Denmark where the map indicates that the
temperature and depth of the saline water filled the sandstone reservoir for each plant. (b) The location of the study area magnified
in northeastern Zealand. (c) The location of five seismic 2D lines and the Karlebo-1A well used in the study. Additional regional
well data are available at Margretheholm, located approximately 30 km away from the prospect area. Courtesy of Google maps.
Modified from Bredesen et al. (2020).

Figure 2. Seismic line 5 shown overlain by the main geologic units with
the projected location of the Karlebo-1A well. Yellow indicates the primary
and secondary geothermal targets.
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such as P- and S-impedance, which, along with other seis-
mic attributes, were used for ML facies prediction.

We begin with a description of the workflow fol-
lowed for the prestack simultaneous impedance inver-
sion, interspersed with examples, and then we go over
to the description of the individual unsupervised ML
techniques as well as their applications.

Well-log correlation
Figure 3 illustrates the correlation of P-velocity,

gamma-ray curves, and the synthetic seismogram with
stacked seismic data. A zero-phase wavelet (shown on
the top) was estimated from the seismic data using a stat-
istical process. A reasonably good correlation is noticed.
Four horizons corresponding to the base of chalk, top of
Fjerritslev, top of Lower Jurassic sandstone unit, and top
of Gassum are shown in Figure 3, although the horizon
top of Vinding (below the Gassum Formation) was also
picked and is shown in some of the subsequent figures.

Prediction of shear curve
A frequently encountered situation is when not many

wells have shear sonic log curves available.
It is desirable to have a full suite of curves for a well

falling on the 2D seismic profile being inverted because it
can help in the generation of an accurate low-frequency
model for impedance inversion, as well as for carrying out
any neural network analysis for computation of a reser-
voir property. As stated above, a shear log curve was
available in Margretheholm-1A but not in well Karlebo-
1A. The linear relationship between the P- and S-imped-
ance for the Margretheholm-1A well was used to predict
the shear curve for the Karlebo-1A well, but it was not
found to be satisfactory. It was then generated by using
multiattribute analysis and checked for its accuracy by
plotting the P-impedance against VP/VS. Figure 4 shows
the crossplot in which the data points from both wells

are seen to overlap, an indication that the shear wave
(S-wave) prediction can be considered reliable.

Low-frequency trend determination for impedance
inversion

Because the basic information on subsurface geologic
structure is contained in the low-frequency impedance
component, any lack in its determination can degrade
the quantitative prediction of properties based on seis-
mic impedance inversion (Lindseth, 1979; Chopra and
Sharma, 2017). It therefore becomes essential to build
an accurate low-frequency model to have confidence
in the impedance inversion and subsequentlymake quan-
titative predictions therefrom (Sams and Saussus, 2013).
Generation of reliable low-frequency models over large
3D seismic volumes in which spatial variations in rock
properties exists could be challenging. But for the exer-
cise at hand, because we were going to invert a single 2D
seismic profile, we kept the method simple. The Margre-
theholm-1A well was projected on this line, and well-to-
seismic tie analysis was carried out to establish a time-
depth relationship for this well. The low-frequency
trends from this well were extrapolated over the com-
plete 2D profile, constrained with the available horizons.
By following this approach, the Karlebo-1A well could
now be treated as a blind well.

Having determined the low-frequency models for
compressional wave (P-wave) and S-wave impedance,
the next step is to carry out preconditioning of the pre-
stack data for enhancing its signal-to-noise ratio.

Preconditioning of seismic data
The prestack seismic data were conditioned carefully

to make sure that amplitudes are preserved such that
their variation with offset/angle could be used in a mean-
ingful way. The specific processes used in the condition-
ing were supergathering (3 × 3), band-pass filtering,
random noise attenuation, and trim statics, with differ-
ence plots taken at each step to ensure that no useful

Figure 4. Crossplot of P-impedance versus VP/VS ratio from
the Karlebo-1A and Margretheholm-1A wells. The S-wave
velocity curve was predicted at the Karlebo-1A well using mul-
tiattribute analysis (Hampson et al., 2001; Pramanik et al.,
2004). Note that the data points from the Karlebo-1A wells
overlap those from the Margretheholm-1A well, indicating that
the S-wave prediction is reliable.

Figure 3. Correlation of the Karlebo-1A well-log curves with
the seismic data. The blue traces represent the synthetics (gen-
erated with the wavelet shown above), whereas the red traces
represent the seismic data. There is a reasonably good corre-
lation coefficient of ρ = 0.66 between the synthetic and red
traces in the time window indicated by the yellow bars.
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signal was distorted or attenuated (Hunt et al., 2015;
Chopra and Sharma, 2016).

Simultaneous impedance inversion
In simultaneous prestack inversion, multiple partial-

offset or angle substacks are simultaneously inverted.
For each angle stack, a unique wavelet is estimated.
Subsurface low-frequency models for P-impedance,
S-impedance, and density constrained with appropriate
horizons in the broad zone of interest are constructed
using the approach explained above. The models, wave-
lets, and partial stacks were used as the input in the
inversion, and the output was the P-impedance and
S-impedance. The angle range selected was 0°–32°.

Before impedance inversion is carried out on the
whole seismic profile, generally, inversion is carried
out at the location of the well, so that the inverted
impedance traces can be compared with the P- and
S-impedance well logs. This step is usually referred
to as inversion analysis. In Figure 5a and 5b, the inver-
sion results in red are shown overlaid on the equivalent
log traces in blue, for both wells, as well as the equiv-
alent low-frequency model traces in black. The high cor-
relation between the individual traces indicates that the
inversion is acceptable. One prominent deviation is in-
dicated with the pink block arrows (Figure 5a), which is
also seen in Figure 3, in which the seismic amplitude
seems to be somewhat stronger than the synthetic
amplitude at that location. The inverted impedance
trace can be used to create a synthetic trace (red in
Figure 6a), which again seems to match the real seismic
traces well (black in Figure 6b), as seen by their com-
puted difference, which is low as shown in Figure 6c.
These encouraging results prompted carrying out the
inversion over the complete seismic profile.

Figure 7 shows the seismic profile after stacking
of the preconditioned gathers, with the overlay of the
P-impedance curve from the Karlebo-1Awell and the five
horizons picked on it. The equivalent inverted P- and

S-impedance sections are shown in Figure 7c and 7d,
with the respective well logs overlaid as color strips
as well as the horizons. The good correlation between
the inversions and their respective logs lends confidence
to their accuracy. Good lateral resolution and variation is
noticed on both impedance sections. Between common
mid point 2400–2500, there is a zone influenced by some
vertical striping noise. This artifact also influences the
subsequent results. It is suspected to be related to lateral
variations in the fold of the seismic data because there
were some areas along the seismic line in which the use
of vibrators was not allowed close to local residents.

Once the P- and S-impedance are derived from pre-
stack seismic data, other attributes can be derived
therefrom. Such attributes can be useful for identifying
different lithofacies. Bredesen et al. (2020) illustrate the
use of P-impedance and VP/VSin classifying different fa-
cies. To follow a similar approach, we made a crossplot
of P-impedance against VP/VS for both wells (Karlebo-
1A and Margretheholm-1A) color coded with Vclay and
porosity as shown in Figure 8. After examining the clus-
ters of data points and the range of values of V clay and
porosity that they spanned, three ellipses were drawn to
capture the data points as shown. The points within the
three ellipses were then back projected onto the well
logs to check where they were coming from.

The points enclosed by the gray color are associated
with high V clay and low porosity, so they can be consid-
ered as coming from a clay-rich formation, which is evi-
dent as per their back projection on well-log curves.
Similarly, the points enclosed by the greenish and yel-
lowish ellipses can be considered as coming from shaly
sand and porous sand formations, respectively. With
this information being established, these ellipses can
be mapped on inverted attributes as shown in Figure 9.
Figure 9a shows a crossplot of inverted P-impedance
versus VP/VS over our zone of interest in which different
ellipses correspond to the mapped lithologies. The re-
semblance of this crossplot with the crossplots shown
in Figures 4 and 8 lends confidence in the inversion

Figure 5. Inversion analysis carried out at the (a) Karlebo-1A and (b) Margretheholm-1A wells. The inverted trace in red has an
overall good match with the measured well-log traces in blue. Note the prominent misfit indicated with the pink block arrows where
in Figure 3 we see that the seismic amplitude seems to be somewhat stronger than that of the corresponding synthetic amplitude.
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process. Figure 9b shows the spatial mapping of different
lithofacies on the vertical section through back projec-
tion of the cluster points within the ellipses. Notice that
although the cap rock is mainly clay-rich, the shaly sand
and porous sand facies exist in the primary and secon-
dary targets, which is expected as per the classification
made on well-log curves. In addition, the results imply a
higher proportion of porous sands toward the southwest.
Although the analysis discussed so far seems to be a rep-
etition of workflow followed by Bredesen et al. (2020),
our inversion results and spatial distribution of different
lithofacies appear to be more striking. As mentioned ear-
lier, the purpose of this study was not only to repeat the
previous exercise, but to seek additional value by way of
ML applications for facies classification.

Bayesian classification
The characterization of a reservoir in terms of lithol-

ogy variation from seismic data being an inversion prob-
lem could probably yield different models for the same
input seismic response. Some of these outcomes could
be more probable than others. The Bayesian facies
classification is a probabilistic approach that allows
combining a priori information about a model and data
measurements. Thus, we can follow an approach that ac-
counts for the uncertainties associated with reservoir
characterization in the different lithounits (Chopra et al.,
2019). This work follows the Bayesian classification ap-
proach (Grana, 2013) and provides a facies model reflect-
ing the quality of the lithounits and a related uncertainty
analysis. Bredesen et al. (2020) use this approach and se-
lected weighted mean and standard deviation as statisti-
cal estimators to provide a reasonable representation of
the reservoir predictions.

When using Bayesian classification, Bredesen et al.
(2020) define three facies based on the cutoff values
on a crossplot of acoustic impedance against VP/VS
well curves, and the probability distributions for each
of these facies are represented by kernel-density-esti-
mated probability density functions (PDFs) (Grana,
2018). Once the acoustic impedance and VP/VS attrib-
utes were derived from simultaneous impedance inver-
sion, Bredesen et al. (2020) compute the facies using
the PDFs.

Unsupervised ML facies classification
Deterministic techniques such as the Bayesian classi-

fication of rock-physics parameters directly relate the
seismic response to known rock properties. In contrast,
the petrophysical correlation of the seismic response to
fluid flow units is in general unknown. Unsupervised
learning provides a means to determine if the seismic re-
sponse can be related to flow units or rock types that can
be calibrated with additional well control, but for which
we do not understand the underlying petrophysical or
geologic theoretical support. Still, seismic interpreters

Figure 6. (a) Synthetic trace created by using the inverted P-
impedance trace at the location of the Karlebo-1A well re-
peated four times shown in red, (b) the real seismic traces
at the well location, and (c) the error or difference of (a
and b). Because the error is small, the inversion can be taken
as accurate.

Figure 7. (a) Seismic line 5with the P-impedancewell log over-
laid, (b) the equivalent P-impedance section with the P-imped-
ance well log colored strip overlaid, (c) the equivalent P-
impedance section from the inversion carried out by Bredesen
et al. (2020) with the P-impedancewell log colored strip overlaid,
and (d) the equivalent S-impedance section with S-impedance
well log colored strip overlaid. In addition to the reasonably
good lateral variation seen on the sections, the correlation of
the two impedance logs with the inverted sections shown in
(b) seems to be exceptionally good. All five horizons picked
on the seismic amplitude section are also shown overlaid.
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face a perpetual challenge of extracting heterogeneous
seismic facies on different generated attributes. The
common analysis tools include corendering, crossplot-
ting, and visualization, which can help to an extent in
terms of simultaneous display of the input attributes.
The data reduction approach resorted to at times applies
mathematical techniques to reduce the number of attrib-
utes to amanageable subset. Clustering is anotherway to
identify elements within the data that have similar ex-
pressions. In this study, we compare the application
of some established ML techniques, namely, principal

component analysis (PCA), independent component
analysis (ICA), Kmeans, Gaussian mixture models
(GMMs), self-organizing maps (SOMs), and generative
topographic mapping (GTM). We find such an applica-
tion promising because the facies results exhibit higher
vertical and lateral resolution than the supervised Baye-
sian classification. Some applications of unsupervised
ML applications for facies classification have been dis-
cussed earlier by Chopra and Marfurt (2018) and Chopra
et al. (2019) for case studies from the Barents Sea and
the Delaware Basin, US, respectively. Below, we briefly

describe the ML techniques and their ap-
plication to the geothermal sandstone
reservoir in Denmark, which has been
discussed previously.

PCA
PCA aims to identify patterns in the in-

put attributes by detecting correlation be-
tween them. If a strong correlation exists
between some of them, then those attrib-
utes can be lumped together. Thus, PCA
is a useful dimensionality reduction tool
and assumes that the input seismic attrib-
utes exhibit a Gaussian distribution.

Many of our seismic attributes are
coupled through the underlying geology,
for example, a fault could give rise to lat-
eral changes in the waveform, dip, peak
frequency, and amplitude. Less desirably,
there are attributes such as the alternative
measure of coherence (Barnes, 2007) or a
suite of closely spaced spectral compo-
nents, which may be coupled mathemati-

cally. While using the seismic attributes, the amount of
redundancy can be measured with the covariance matrix.
Beforewe compute the covariancematrix, because differ-
ent attributes may have different units or are unitless
(VP/VS, Poisson’s ratio, and coherence), they need to
be normalized, for which Z-score normalization is usually
adopted. In an N × N covariance matrix, the element Cmn

is the crosscorrelation between the mth and nth scaled
attributes over the interval or volume of interest. Once
the covariance matrix is formed, to be able to gauge in-
formation on the magnitude and direction of variation, it
needs to be decomposed into eigenvectors and eigenval-
ues. The attributes used in the present exercise are the
instantaneous amplitude, spectral magnitude (40 Hz),
P-impedance, VP/VS, lambda-rho, and porosity. All of
these attributes are seismic amplitude-derived through
prestack simultaneous impedance inversion or otherwise,
which expectedly should furnish information on the rock
types better than some of the other attributes.

By convention, the first step is to order the eigenval-
ues from the highest to the lowest. The eigenvector with
the highest eigenvalue is the first principal component of
the data set (PCA1); it represents the vector representing
themaximum variance in the data and thereby the bulk of
the information that would be common in the attributes

Figure 8. Crossplot of P-impedance versus VP/VScolor coded with (a) Vclay and
(b) porosity using data for both wells, Karelbo-1A and Margretheholm-1A. The
three ellipses in gray, orange, and olive are defined by the different values of Vclay
and porosity indicating different rock types. (c) Back projection of three colored
facies enclosed within the ellipses onto the well curves for the two wells.

Figure 9. Crossplot of (a) P-impedance versus VP/VSusing
well data from both wells and (b) inverted P-impedance ver-
sus VP/VS. (c) Back projection of cluster points enclosed
within the ellipses seen on the inverted data crossplot onto
the vertical section. The gamma-ray log curve has been over-
laid on the section.
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used. The eigenvector with the second-highest eigen-
value, called the second principal component (PC2), ex-
hibits lower variance and is orthogonal to PCA1. PCA1
and PCA2 will lie in the plane that represents the plane
of the data points. Similarly, the third principal compo-
nent (PC3) will lie in a plane orthogonal to the plane
of the first two principal components. Because seismic
attributes are correlated through the underlying geology
and the band limitations of the source wavelet, the first
two or three principal components will almost always re-
present much of the data variability. The input seismic
attributes used for the present exercise comprised the
P-impedance, S-impedance, instantaneous amplitude,
porosity, lambda-rho, and spectral component at 45 Hz.

In Figure 10a, 10b, and 10c, we show section displays
for seismic profile 5 for the PCA-1, PCA-2, and PCA-3
components, respectively. Overlaid in black are the five
picked horizons on the section aswell as the P-impedance
well log for the Karlebo-1A well. We see different-colored
patches on the display, which are a representation of
the different facies in the data. Figure 10d exhibits the

three individual displays corendered together using the
red, green, blue (RGB) color scheme. This display is par-
ticularly useful in that the facies information contained in
each of the three principal components can be conven-
iently interpreted on a single display.

ICA
ICA is another ML technique that classifies the differ-

ent input seismic attributes into independent compo-
nents, but it does not require them to have a Gaussian
distribution. Besides this, the other difference between
ICA and PCA is that the independent components are
not orthogonal (Chopra et al., 2018; Lubo-Robles, 2018).
Thus, from the given set of seismic attributes used as
input for the analysis, ICA finds the independent compo-
nents from that mixture. The problem is cast as a matrix
equation, which is then solved using higher order statis-
tics. We show the ICA application to a set of input seis-
mic attributes, in which the generated independent
components exhibit better resolution and separation
of the geologic features (Chopra and Marfurt, 2019).

Figure 11 shows a section display for seismic profile
5 from the ICA-1, ICA-2, and ICA-3 RGB coblended data.
Notice the appearance of the clusters in different colors
resembles the cluster patterns obtained from the PCA
coblended data display in Figure 10d, except they ap-
pear to be somewhat better defined and exhibit better
spatial resolution.

Kmeans clustering
The Kmeans clustering approach clusters a given dis-

tribution of unlabeled points into a desired number of
groups, such that the points within each cluster have
greater similarity with one another than the points in
another group. The process begins by assigning at ran-
dom some centroid seed points that serve as centers of
the groups that we wish them to form. Each centroid
defines a cluster. The distance between each data point

Figure 10. Section display for seismic profile 5 for the
(a) PCA1, (b) PCA2, and (c) PCA3 components. (d) Equivalent
display from the PCA1, PCA2, and PCA3 corendered using RGB
blending. The P-impedance well log for well Karlebo-1A is
shown overlaid on each section. Of the four rock types marked
to the left of the composite section, not only does rock type 2
stand out in a different color pertaining to the shale facies, but
the variation in facies can also be seen in units 3 and 4 as well.

Figure 11. Section display for seismic profile 5 for the ICA1,
ICA2, and ICA3 components corendered using RGB blending.
Compared to the composite display in Figure 10d, the lateral
resolution and contrast appears to be better on this display in
each of the four intervals defined by the five horizons shown
overlaid. The colors representing the different facies in the
intervals also seem to jibe well with the overlaid P-impedance
log. The variation in the individual facies in the four intervals
seems to be defined somewhat better on this display than the
PCA composite display in Figure 10d.
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and cluster centroid is calculated. Usually, the Euclid-
ean distance between the points is calculated and a
point is considered within a cluster if it is close to
the centroid. This way, the points within each cluster
get reorganized when the centroids are recalculated
based on the reorganized points within each cluster.
The last two steps are carried out iteratively until there
is no more movement of the centroids when conver-
gence is achieved. The projection of the clusters onto
the three principal axes is output from the computation
(Kmeans-1, Kmeans-2, andKmeans-3) rather than the clusters
themselves, which can then be combined into a single
display with RGB corendering.

Figure 12 shows a section display for seismic profile
5 for Kmeans-1, Kmeans-2, and Kmeans-3 components cor-
endered using RGB blending. Compared with the
composite displays in Figures 10d and 11, especially fo-
cusing on intervals 3 and 4, the lateral resolution and
contrast on this display does not appear to be better.
Figure 11 representing the corendering of ICA attrib-
utes still takes the lead in terms of clarity.

GMM
GMM is a technique for carrying out semiparametric

density estimation, in which the PDF is represented as a
weighted sum of normal or Gaussian distributions (Wal-
let et al., 2014). It could also be viewed as a probabilistic
approach to clustering, in which each Gaussian term in
the model may represent a class and the weights repre-
senting the a priori probabilities of the different classes.

Figure 13 shows a section display for seismic profile
5 for unsupervised facies classification generated using
GMM application, in which the data were classified into
12 clusters. The display looks like the Kmeans clustering
display shown in Figure 12, with some enhanced lateral
resolution in some pockets in different intervals.

SOMs
The SOM is another unsupervised ML technique that

generates a seismic facies map from multiple seismic
attributes, similar to the Kmeans clustering approach. But

it differs from the Kmeans in that it first defines the initial
cluster centroids in an N-dimensional attribute data space
by fitting a plane defined by the first two eigenvectors of
the covariance matrix to the data in a least-squares sense
(Kohonen, 1982, 2001). With the centroid still locked to
this plane, it is iteratively deformed into a 2D surface that
fits the data even better. Once convergence is reached,
the N-dimensional data are projected onto this 2D sur-
face. Thus, SOM may be considered as projection from
amultidimensional attribute space to a 2D space. Usually,
the output from SOM computation is obtained in the form
of two projections on the two SOM axes, which can then
be directly cross plotted and displayed using a 2D RGB
color bar (Chopra and Marfurt, 2019).

Figure 14 shows a section display for seismic profile 5
for the SOM-1 and SOM-2 cross plotted together using a
2D color bar as shown to the lower right. Some of the
clusters seen on this display are better defined than
the ones shown earlier from PCA and ICA analysis in Fig-
ures 10 and 11 or the Kmeans or GMM clustering displays
in Figures 12 and 13.

The 2D color bar visualization may not be available
in the interactive interpretation workstations used by
interpreters. A convenient way is to use the multiplexed
2D color bar shown alongside. The white space above
the color bar deserves an explanation.

The colors that we see on the workstation are stored
in the computer in the form of “bit” sizes. A single bit
would have two values, 0 and 1, and for a pixel, this

Figure 12. Section display for seismic profile 5 for Kmeans-1,
Kmeans-2, and Kmeans-3 components corendered using RGB
blending. Compared with the composite displays in Fig-
ures 10d and 11, the lateral resolution and contrast does
not appear to be better on this display, especially focusing
on intervals 3 and 4.

Figure 13. Section display for seismic profile 5 from unsu-
pervised facies classification generated using the Gaussian
mixture models application.

Figure 14. Section display for seismic profile 5 from the
SOM1 and SOM2 cross plotted using a 2D color bar. As com-
pared with the earlier methods, besides the better spatial res-
olution in intervals 3 and 4, even in interval 2, the resolution is
seen to be superior.
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would represent just black and white. Two bits imply
that there are four possible combinations (00, 01, 10,
and 11), and three bits suggest eight possible combina-
tions (000, 001, 010, 011, 100, 101, 110, and 111). In gen-
eral, we can say that the number of combinations is two
raised to the power of the number of bits. Thus, an
eight-bit pixel (or one byte) would represent 28 = 256
possible integer values, which are represented as inte-
gers between 0 and 255.

For RGB color blending, we assign six levels of red,
green, and blue to three different volumes, resulting in
63 = 216 color levels. Similarly, 3D color bars use six lev-
els for the color on each axis, and when multiplexed into
a 2D color bar appears as shown in Figure 14. Thus, there
is a mismatch between the two and anything above 216–
256 is assigned the white color. Such a mismatch does
not result in any loss of resolution on the display.

GTM
Although the Kohonen SOM method described

above is easy to implement and is computationally in-
expensive, and thus a popular unsupervised clustering
approach, it does have limitations. First, there is no
theoretical basis for the selection of parameters such as
the training radius, neighborhood function, and learn-
ing radius because all of these are data-dependent
(Bishop et al., 1998; Roy, 2013). Second, no cost func-
tion is defined in the method that could be iteratively
minimized indicating convergence during the training
process. Finally, as a measure of confidence in the final
clustering results, no probability density is defined.
Thus, an alternative approach to the Kohonen SOM
method, called GTM, was developed by Bishop et al.
(1998), which overcomes the above-stated limitations.
It is a nonlinear dimension-reduction technique that
provides a probabilistic representation of the data vec-
tors in latent space (Chopra and Marfurt, 2019).

The GTM method begins with an initial array of grid
points arranged on an N-dimensional space or a lower di-

mensional latent space, for example, the
first three principal components or the
ICA components. These grid points are
then nonlinearly mapped onto an equiva-
lent dimensional non-Euclidean curved
surface as a corresponding vector (mk)
embedded into different dimensional data
space in GTM (Chopra et al., 2019). Each
data vector (xk) mapped into this space is
modeled as a suite of Gaussian PDFs
centered on these reference vectors
(mk). The components of the Gaussian
model are then iteratively made to move
toward the data vector that it best repre-
sents (Chopra et al., 2019). The math-
ematical details of the method as well
as its applications have been described
by Roy (2013) and Roy et al. (2014).

Thus, as the above descriptions sug-
gest, the PCA, ICA, SOM, and GTM

methods project data from a higher dimensional space
(8D when eight attributes are used as the input) to a
lower dimensional space, which may be a 2D plane
or a 2D deformed surface. Once projected onto these
planes, the data can be clustered in that space, coren-
dered with RGB or cross plotted using a 2D color bar.

In Figure 15, we show a section display for seismic
profile 5 for the GTM-1 and GTM-2 cross plotted together
using a 2D color bar as shown to the lower right. This
display exhibits the best spatial resolution in all four in-
tervals 1–4 compared with all of the other methods dis-
cussed in this exercise. The individually colored patches
or facies are crisper and could lead to more accurate in-
terpretations.

Conclusion
We have shown a comparison of seismic facies clas-

sification using ML methods such as PCA, ICA, Kmeans,
GMM, SOM, and GTM to a seismic profile from
Denmark.

In summary, we find that the machine methods hold
promise as each of them exhibits more vertical and spa-
tial resolution than a supervised Bayesian classification
approach as applied in a previous study on the same
dataset. Among ML methods, ICA furnishes more detail
than PCA. The SOM and GTM methods provide prom-
ising results, with the latter yielding a more accurate
definition as seen on the displays.
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