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Abstract 

Bandwidth extension of seismic data is a desirable goal when the available data has inadequate 

frequency content to delineate thin beds, facies changes, and subtle faults. Though significant 

efforts are expended to preserve frequency content during processing of seismic data, 

processes such as multi-window statistical deconvolution, inverse-Q filtering, as well as time-

varying spectral whitening, are not effective enough when the intervals to be characterized are 

below tuning. Consequently, methods have been developed for spectral balancing as well as 

bandwidth extension of the input seismic data. This article describes and illustrates the 

performance of sparse-layer seismic reflectivity inversion, carried out using basis pursuit 

decomposition to extend the seismic bandwidth. This method yields a reflectivity series which 

can subsequently be filtered to a desirable bandwidth that exhibits optimum resolution and 

reasonably accurate synthetic ties to wells. This method can also be used to derive relative 

acoustic impedance. We also show the improved lateral resolution of bandwidth extension on 

attributes such as coherence and curvature. We use these and other attributes to classify 

seismic facies, using several unsupervised machine learning methods, and find they provide a 

higher level of detail, whether it is in the lineaments corresponding to faults or in the thin-layered 

litho-intervals. Examples are shown from a 3D and wells at Smeaheia, Norway. 

Introduction 

During the last decade, developments in broadband acquisition and processing for land and 

marine seismic data have demonstrated the importance of enhanced signal bandwidth. The 

processing of such broadband data comes with challenges, a salient one being noise 

attenuation at low frequencies for gaining signal bandwidth. Bandwidth extension processing, 

when carried out post-imaging, can facilitate improved seismic interpretation, attribute analysis 
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and reservoir characterization, and can benefit both legacy and modern broadband seismic 

data. 

As broader band and higher frequency data result in better seismic resolution (Kallweit and 

Wood, 1982), typically, every effort is made during seismic data processing (post-imaging) to 

preserve the frequency content of the data. A general practice is to use a two- or three-window 

statistical deconvolution to correct for the dynamic loss of high frequencies with increasing travel 

time. These windows usually overlap to avoid artifacts, thereby introducing phase distortions. 

Furthermore, frequencies with poor signal-to-noise ratio may be amplified and there is 

consequently a trade-off between data quality and bandwidth. 

Inverse-Q filtering, which requires the subsurface Q profile, can be used to boost high 

frequencies (Bickel and Natarajan, 1985; Tonn, 1991), but suffers the same signal-to-noise ratio 

limitation. Because of mixed elastic and inelastic effects on the seismic spectrum, Q is difficult to 

estimate from surface seismic data, and therefore most workers use the constant Q model (e.g., 

Kjartansson, 1979). In addition to compensating for absorption by boosting the amplitude of the 

higher frequency components, an accurate Q-filter will also compensate for the corresponding 

dispersion effects by rotating the phase components of the seismic data. This stabilization of the 

phase spectrum of the seismic wavelet may be more important than boosting high frequency 

amplitudes, which if overdone will magnify noise. Although a constant Q model may provide an 

accurate representation of intrinsic attenuation, it does not properly represent attenuation due to 

scattering, such as from rugose surfaces, periodic fractures, or patchy saturation. 

Time-varying spectral whitening (TVSW) involves passing the input data through a number of 

bandpass filters and determining the decay rates for each band. The inverse of these decay 

functions for each frequency band is applied, and the results are summed so that the amplitude 

spectrum for the output data is whitened in a time-variant way. As reflectivity spectra are almost 

never white, and most commonly blue (Walden and Hoskin, 1985), this approach is 

inappropriate for data conditioning prior to inversion, as it distorts the reflectivity. 

As it is a trace-by-trace process, TVSW is not appropriate for AVO applications (Yilmaz, 2001). 

Like the other processes discussed above, at a given frequency it multiplies signal and noise by 

the same scalar value and can reduce overall signal-to-noise ratio by boosting frequencies with 

less signal than noise. All these methods often prove to be ineffective when the target intervals 

to be characterized are seismically thin below the Widess (1973) tuning limit. For this reason, 

other advanced methods have been developed for spectral balancing (Marfurt and Matos, 2014; 

Chopra and Marfurt, 2016) as well as extending the bandwidth of the input seismic data 

(Puryear and Castagna, 2008; Chopra et al., 2006; Smith et al., 2008; Zhang and Castagna, 

2011). Liang et al. (2017) provide a comparison of seismic bandwidth extension methods. 
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In this paper, we describe the sparse-layer seismic reflectivity inversion method (Zhang and 

Castagna, 2011) for bandwidth extension. This method makes use of the basis pursuit 

decomposition and is superior to the traditional way of broadening the seismic bandwidth with 

the application of spiking deconvolution. The inversion method determines a sparse number of 

reflectivity patterns which, when summed together, form the original seismic trace. The 

determined pattern, on convolution with a wavelet of extended bandwidth, yields the desired 

bandwidth extension. The details of the method are discussed in the following section. 

Next, we demonstrate the advantages that accrue, by performing bandwidth extension on a 3D 

seismic dataset (along with data for two wells on the 3D survey) from the Smeaheia area 

offshore Norway. The first advantage is in terms of reasonably accurate synthetic ties to wells. 

The second advantage is that seismic attributes generated on the bandwidth extended data 

exhibit improved lateral resolution. We demonstrate this with the generation of attributes such 

as relative acoustic impedance, multispectral energy ratio coherence, and multispectral 

curvature. 

Finally, we take the exercise forward by generating a number of attributes (relative acoustic 

impedance, instantaneous amplitude, instantaneous frequency, gray-level co-occurrence matrix 

(GLCM) energy and spectral magnitude at different frequencies) on both the original and 

bandwidth extended versions of the seismic data. The generated attributes are then used to 

perform unsupervised machine learning facies classification using two known methods, self-

organizing mapping (SOM) and generative topographic mapping (GTM). On comparing the 

stratal displays extracted from the facies volumes so generated, we find that the facies 

generated on bandwidth extended data yield higher spatial resolution, in both the lineaments 

corresponding to faults and the thin-layered litho-intervals. 

In view of such observations, it would not be incorrect to say that bandwidth extension is an 

enabler for the application to narrow band legacy seismic data. Modern broadband seismic data 

have a wider band of frequencies than legacy data but may still fall short of expectations for thin 

reservoir targets. In those cases, bandwidth extension could prove to be useful, as well. 

Sparse-layer-based bandwidth extension versus spiking deconvolution 

The classical way to broaden the seismic bandwidth is to apply spiking deconvolution to the 

data. Although the wavelet is unknown, it must be minimum phase, which requires a 

preprocessing step for vibroseis data. Then, through a suite of autocorrelations, a wavelet is 

estimated that best reduces the seismic data into a sequence of spikes. Because the effective 

source wavelet changes with time, the algorithm must be applied in overlapping windows or in a 

running-window manner. Also, the very low and high frequencies are not present in the input 

data, such that a bandpass filter needs to be applied to the output to reduce the noise. This 

method can improve resolution somewhat by shaping the spectrum of the wavelet embedded in 
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the seismic data but does not extend signal to frequencies where it is initially absent. It also 

makes the mathematically convenient, but unjustified, assumption that the reflectivity series is 

white, and therefore distorts the reflectivity spectrum. 

In principle, spiking deconvolution should be able to resolve a thin bed that falls below the 

tuning frequency. In practice, because the wavelet is unknown, this resolution is poor, where 

phase effects introduced by tuning are partially incorporated in estimating the phase of the 

source wavelet. 

 

Figure 1: Four wedge models described by Chung and Lawton (1995) where the thickness ranges from 0 to 50 ms at 

1 ms increments and where (a) the reflectors are equal and opposite polarity, (b) the reflectors are equal and the 

same polarity, (c) the reflectors are unequal and opposite polarity, and (d) the reflectors are unequal and the same 

polarity. In this example, each wedge has been convolved with a 5-10-40-50 Hz Ormsby wavelet. For thin bed 

inversion, the wedges in (a) and (b) are convolved with either a well tie source wavelet or with a statistical wavelet, 

thereby forming 101 basis functions that will be fit to the data at each sample. 

The Zhang and Castagna’s (2011) sparse-layer seismic reflectivity inversion is different in two 

ways. First, a wavelet estimate that can be temporally and spatially varying, is made. Unlike 

deconvolution, the method effectively shapes the spectrum of the wavelet rather than the data. 

Second, the basis function does not consist of an isolated spike (with an unknown wavelet) but 
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rather of a library of thin bed responses convolved with an externally estimated seismic wavelet 

field using a priori information and statistical assumptions. Figure 1a and 1b show 101 basis 

functions (the response for Figure 1a at thickness 0 is 0.0 and ignored) for a 5-10-40-50 Hz 

Ormsby wavelet. Zhang and Castagna (2011) note that the response of Figure 1c and 1d can 

be represented as a weighted sum of the two basis functions in Figure 1a and 1b. 

Given these dipoles (2-layer or thin bed) basis functions (layer responses), there are multiple 

ways to fit the data, thereby giving a non-unique solution. For this reason, Zhang and Castagna 

(2011) use a basis-pursuit decomposition that not only least-squares fits the basis function to 

the data but favors simpler model fits using an L1-norm penalty function. As discussed by Liang 

et al. (2017), invoking sparsity to the layer functions that sum to form the seismic trace, rather 

than to the reflectivity series, does not discriminate against thin layers, as does sparse-spike 

inversion. 

The sparse-layer inversion thus determines a sparse number of patterns which, when summed 

together, form the original seismic trace. To extend the bandwidth, we now use the same 

dipoles that were convolved with the original wavelet field, but now replace the original wavelet 

with one with an extended bandwidth. Explicitly stated, the algorithm replaces the original data 

with a model of dipoles convolved with the well-log generated synthetic wavelet or statistical 

wavelet, with a wavelet of our own choosing. In this manner, the unmeasured high and low 

frequencies in the new extended bandwidth wavelet are consistent with the same model used to 

represent the original data. This process is equivalent to harmonically extrapolating the 

sinusoidal layer response reflectivity spectrum outside the original frequency band. In this way, 

rather than boost signal and noise by the same amount outside the main frequency band, as is 

done in wavelet shaping processes such as deconvolution or inverse-Q filtering, the signal is 

boosted more than the noise, essentially stealing signal-to-noise ratio from the band where 

signal is strongest. 

The three major limitations of the method are: 

1. Like all inversion methods, it requires a correct seismic wavelet field, 

2. it requires sufficient character and amplitude of a layer reflectivity spectrum within the 

original seismic band, and 

3. it assumes a sparse reflectivity series 

 

Therefore: 

1. As there is no perfect wavelet extraction method, one should test the sensitivity of the 

output to possible variations in the extracted wavelet field. 
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2. The method cannot resolve a layer that is so thin that the shape of the reflectivity 

spectrum within the seismic band is not strongly influenced by that layer (the lowest 

resolvable thickness then becomes a matter of signal-to-noise ratio (S/N) within the 

seismic band). As this is a trade-off between character and S/N, there is no exact rule for 

the resolvable thickness, as it depends on S/N, original bandwidth, and geology. Typically, 

layers below 1/16th of a wavelength are not well resolved (see Puryear and Castagna, 

2008), and the broader the original band, the greater the extension that can be achieved. 

The bandwidth requirement is evident, as no extension can be performed on a sine wave. 

3. As the method assumes sparsity, no extension can be achieved when reflectivity is 

random. As discussed by Liang et al. (2017), even in this worst-case scenario, the method 

can be used to amplify signal more than noise for low S/N frequencies within the original 

seismic band and can thus outperform deconvolution. There is the theoretical possibility 

that long high frequency periodic reflectivity signals outside the original seismic band may 

also be missed, although these are generally not important, and may in fact make 

contributions within the original seismic band because of spectral leakage due to 

windowing. 

The sparse-layer inversion does not directly use well data in the inversion, though well data may 

be used in wavelet extraction and parameter selection (such as degree of sparsity), and of 

course for validation. By operating on a trace-by-trace basis, this inversion yields a reflectivity 

series, which is then filtered to a desirable bandwidth that exhibits an optimum combination of 

resolution and reasonably accurate synthetic ties to wells. The output reflectivity series can also 

be used to derive relative acoustic impedance. 

Application of sparse layer inversion method to seismic data 

For demonstrating the application of the sparse-layer inversion to seismic data, we selected the 

3D seismic data from Smeaheia area offshore Norway. Smeaheia has been considered as a 

potential area for CO2 storage and evaluation. 

The Smeaheia area lies about 30 km east of the Troll gas field (Figure 2), on the Norwegian 

continental shelf. It is located in a fault block bounded by the Vette Fault to the west and 

the Øygarden Fault to the east and is raised about 300 m relative to the Troll field. The Jurassic 

Sognefjord, Fensfjord, and Krossfjord Formations form the producing reservoir zones in the Troll 

gas field. 
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Figure 2: (Left) Location of the Smeaheia area on the Norwegian continental shelf. (Right) Zoom of the Smeaheia 

area indicating the two interpreted structures, ‘Alpha’ and ‘Beta’. The two main fault complexes in the area are 

marked as dashed black lines. The dashed blue rectangle depicts the outline of the 3D seismic volume being used, 

and the dashed red line is the location of the seismic inline segments shown in Figures 4 and 7. The image to the left 

was prepared with the use of Google Earth Pro (modified after Furre et al., 2017). 

In the Smeaheia block, there are two four-way dip closures (Lauritsen et al., 2018), the Alpha 

structure to the west and the Beta structure to the east. Two exploration wells, namely 32/4-1 

and 32/2-1, have been drilled into these structures, and although the wells encountered 

reservoir of acceptable quality, both turned out to be dry. 

In the Smeaheia area, the Sognefjord Formation is the primary reservoir consisting of medium 

to coarse-grain, well-sorted, micaceous, and minor argillaceous sandstone. Below this formation 

lies the Fensfjord Formation consisting of medium-grained, well-sorted sandstone with shale 

intercalations. Underlying the Fensfjord Formation is the Krossfjord Formation with medium to 

coarse-grained, well-sorted sandstone. 

Overlying the Sognefjord Formation are the Heather and Draupne Formation shales. The 

Heather is comprised of silty claystone with thin streaks of limestone interfingering the 

Sognefjord, Fensfjord and Krossfjord sandstones. The Draupne consists of dark grey to 

brown/black shale that is non-calcareous, carbonaceous, and fissile claystone. Both the Heather 

and Draupne serve as primary seals for the proposed CO2 storage reservoir sandstones of the 

Sognefjord, Fensfjord and Krossfjord Formations. 

As the Sognefjord, Fensfjord and Krossfjord are sandstone reservoir formations, there is 

concern about evaluation of their properties for thicknesses that fall below seismic resolution, 

which could come from shale and carbonate stringers within these zones. Finally, the existence 
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of faults/fractures that fall below seismic resolution could provide pathways for fluid losses. All 

these risks need to be evaluated and mitigated in the context of long-term CO2 storage. 

Available data for demonstration of bandwidth extension 

The available seismic data were the GN1101 3D survey covering the Smeaheia (blue dashed 

rectangle shown in Figure 2) acquired by Gassnova in 2011 and made publicly available by 

Gassnova and Equinor. The bin size for the data is 12.5 m x 25 m, with a sample interval of 4 

ms. Gassnova provided interpreted horizons and well log data for the two 32/4-1 and 32/2-1 

wells, along with well completion reports. Logs included the complete gamma ray curves, but 

sonic and density logs were not recorded at the shallower depths. The seismic data volume is of 

good quality. 

Figure 3 shows the correlation of well curves with seismic data. The blue traces represent the 

synthetic seismograms generated with the zero-phase wavelet shown above. The red traces 

represent the seismic data (a) before, and (b) after bandwidth extension. Windows of seismic 

data before and after bandwidth extension from where the red traces are extracted are also 

shown alongside. There is a reasonably good correlation between the synthetic in blue and the 

seismic traces in red in the time window indicated, but there are more reflection cycles showing 

good correlation after bandwidth extension. 

Figure 3: Correlation of well curves with seismic data. The blue traces represent the synthetics (generated with the 

wavelet shown above), whereas the red traces represent the seismic data (a) before, and (b) after bandwidth 

extension. The correlation coefficients for the ties were 0.745 for (a) and 0.756 for (b). Thus, there is a good 

correlation between the synthetic and red traces in the time window indicated for both data volumes but note the 

resolution of additional events after bandwidth extension, indicated by the yellow arrows. 
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Figure 4: Segment of an inline extracted from (a) input seismic data volume, and (b) input seismic data volume after 

bandwidth extension. Some relevant markers and gamma ray curve for well 32/4-1 are overlain on the two sections. 

(c) Zoom of the two sections cropped to the area enclosed by the dashed grey oblong shapes on the two images 

clearly shows the higher frequency content after bandwidth extension. The frequency spectra (computed over the 

time window exhibited and over the whole seismic volume) for the two data volumes are also shown to the right. 

Notice the enhancement in resolution of the reflections after bandwidth extension. 
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Figure 4a shows a segment of an inline seismic section with key horizons extracted from the 

available seismic data volume (which has a bandpass filter applied), which passes through well 

32/4-1. The gamma ray curve for well 32/4-1 is shown overlain on the section. The ‘Base 

Quaternary’ (in yellow) represents an angular unconformity, and the ‘Peak Draupne’ (in dark 

blue) the top of the shale formation. The ‘Sognefjord’ (in green), ‘Fensfjord (in cyan) and 

‘Krossfjord’ (in bluish green) are the markers of interest representing sandstone formations as 

described above. Two prominent faults in solid black (Vette Fault to the west and Øygarden 

Fault to the east) are also shown overlain on the section. The frequency spectrum computed for 

the time interval of the seismic data exhibited is shown to the right, which indicates a roll-off of 

frequencies beyond 40 Hz. The bandwidth extension method employed here uses the spectrum 

ranging from 5-80 Hz to define a model (the weights in the fit are the spectral magnitudes in 

Figure 4a, so the 40 Hz is weighted more than 80 Hz). Then this model extends the spectrum 

from 80 to 140 Hz where no data were measured. The number 140 Hz is no magic number and 

is arrived at by checking a range of numbers for the high end of the frequency spectrum and 

making an optimum choice, where the bandwidth extended data does not exhibit ringing in the 

seismic reflections. 

Generation of different attributes 

With the improved vertical resolution seen in Figure 4b, our next task is to determine if 

bandwidth extension also enhances the lateral resolution as measured by seismic attributes 

such as coherence and curvature. Specifically, we anticipate that some lateral discontinuities fall 

near the limits of seismic resolution in the original data but will be better resolved in the 

bandwidth extension data. 

Energy ratio coherence: Encouraged with the higher-frequency content of the seismic data, we 

first generated the coherence attribute. Much has been written about this attribute and the 

usefulness of its application. We make use of the energy ratio-based coherence algorithm 

(Chopra and Marfurt, 2008). It is a generalization of Gersztenkorn and Marfurt’s (1999) 

eigenstructure-based coherence computation, where the original trace and its Hilbert transform 

are used to construct the covariance matrix, thereby minimizing artifacts at zero crossings, and 

thereby providing the ability to use shorter analysis windows resulting in reduced stratigraphic 

mixing for short window computations. Coherence run on band-pass filtered or spectral voice 

components often delineate edges at or near the tuning frequency of a given formation (Chopra 

and Marfurt, 2018a, 2018b). In general, shorter, more vertically limited faults and channel edges 

are often better delineated at higher frequencies, while through-going faults are often better 

delineated at lower frequencies. 

In addition to computing a covariance matrix from each bandpass filtered version of the data 

and then computing coherence for each one, we can also add the covariance matrices and 
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compute coherence from its sum, giving rise to multispectral coherence computation (Li and Lu, 

2014; Chopra and Marfurt, 2019). 

We will show the corendered displays of different seismic facies with energy-ratio coherence 

computed both on the conditioned input as well as bandwidth extended seismic data. The 

reader will notice crisper, focused, and clearer definition of the fault lineaments (in black) seen 

on the facies displays in colour which are shown in the next section. 

Figure 5 shows a comparison of time slices at 1.66 s extracted from multispectral energy ratio 

coherence computed on the input seismic data with structure-oriented filtering (Figure 5a) and 

input seismic data with bandwidth extension and structure-oriented filtering (Figure 5b). 

Structure-oriented filtering is an effective incoherence noise suppression process which follows 

the dipping planes in the seismic data volume but does not smear across the discontinuities 

(Höcker and Fehmers, 2002). Notice the superior definition of the lineaments in terms of their 

continuity and intensity seen on the display in Figure 5b. Some of the weak lineaments seen in 

Figure 5a appear nice and bright in Figure 5b. The fault damage zone to the left is also much 

better defined in Figure 5b. 

Figure 5: Time slice at 1.66 s through multispectral energy ratio coherence volumes computed on (a) input seismic 

data with structure-oriented filtering, and (b) input seismic data with bandwidth extension and structure-oriented 

filtering. Notice the superior definition of the lineaments in terms of their continuity and intensity seen on the display in 

(b). Some of the weak lineaments seen in (a) are better delineated in (b) indicated by yellow arrows. The fault 

damage zone indicated by magenta arrows is better defined in (b). 

Curvature: Volumetric computation of curvature was introduced by Al-Dossary and Marfurt 

(2006). By first estimating the volumetric reflector dip and azimuth that represents the best 

single dip for each sample in the volume, followed by computation of curvature from adjacent 

measures of dip and azimuth, a full 3D volume of curvature values is produced. There are many 

curvature measures that can be computed, but the most-positive and most-negative curvature 

measures are the most useful in that they tend to be most easily related to geologic structures. 
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Volumetric curvature attributes are valuable in mapping subtle flexures and folds associated 

with fractures in deformed strata (Chopra and Marfurt, 2007; 2010). In addition to faults and 

fractures, stratigraphic features such as levees and bars and diagenetic features such as karst 

collapse and hydrothermally altered dolomites also appear to be well-defined on curvature 

displays. Channels appear when differential compaction has taken place. An interesting feature 

of this attribute is that the curvature computation that can yield both long wavelength and short 

wavelength estimates which enhance geologic features having different scales. Curvature 

images having different wavelengths provide different perspectives of the same geology 

(Bergbauer et al., 2003). 

Figure 6: Time slices at 1.66 s through most-positive curvature (long-wavelength) volumes computed on (a) input 

seismic data with structure-oriented filtering, and (b) input seismic data with bandwidth extension and structure-

oriented filtering. Notice the superior definition of the lineaments in terms of their continuity, intensity and resolution 

seen on the display in (b). Some of the weak lineaments seen in (a) appear as nice and bright in (b), especially in the 

middle part of the displays. 
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Figure 6 shows a comparison of time slices at 1.66 s from most-positive curvature (long-

wavelength) volumes computed on the input seismic data with structure-oriented filtering and 

input seismic data with bandwidth extension and structure-oriented filtering. Notice the superior 

definition of the lineaments in terms of their continuity, intensity and resolution seen on the 

display in Figure 6b. Some of the weak lineaments seen in Figure 6a appear as nice and bright 

in Figure 6b, especially in the middle part of the displays. 

 

 

Figure 7: Segment of an inline extracted from relative acoustic impedance attribute computed on the (a) input 

seismic data volume, and (b) input seismic data volume after bandwidth extension. Some relevant markers and 

gamma ray curve for well 32/4-1 are overlaid on the two sections. Notice the enhancement in the resolution of the 

reflections after bandwidth extension. The tuning thickness at the levels of Sognefjord, Fensfjord, and Krossfjord 

formations was 16 m, 19 m, and 24 m, respectively, before and these improved to 13 m, 15 m, and 17 m, 

respectively, after bandwidth extension. 
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Relative acoustic impedance: Relative acoustic impedance is computed by continuous 

integration of the original seismic trace with the subsequent application of a low-cut filter. 

Because it assumes a zero-phase wavelet that is as close to a spike as possible, the improved 

resolution of bandwidth extension will provide improved results over the original data. The 

impedance transformation of seismic amplitudes enables the transition from reflection interface 

to interval properties of the data, without the requirement of a low-frequency model. Figure 7 

shows a comparison of inline sections from relative impedance computed on the input seismic 

volume (Figure 7a) and the equivalent section from relative impedance computed on frequency-

balanced seismic volume (Figure 7b). Notice the enhanced resolution and better relative 

impedance definition on the section in Figure 7b. A similar comparison of stratal slices 32 ms 

above the Sognefjord marker from the relative acoustic impedance attributes computed from 

input seismic data and input seismic data after bandwidth extension is shown in Figure 8. Notice 

the crisp definition of the faults as indicated by the highlighted areas in dashed purple outlines. 

Likewise, the other attributes computed on the two seismic volumes are listed below along with 

their brief descriptions. 

Instantaneous envelope/instantaneous frequency: Instantaneous envelope is a measure of the 

instantaneous energy of the analytic seismic trace, independent of phase, and provides 

information on intensity of reflections. Similarly, instantaneous frequency provides information 

on attenuation and layer thickness. We use a smoother, more stable version of the 

instantaneous frequency usually obtained by weighting it by the envelope. 

Sweetness: Sweetness is a “meta-attribute” or one computed from others, which in this case is 

the ratio of the envelope to the square root of the instantaneous frequency. A clean sand 

embedded in a shale will exhibit high envelope and lower instantaneous frequency, and thus 

higher sweetness, than the surrounding shale-on-shale reflections. 

GLCM Energy: GLCM or grey-level co-occurrence matrix energy is a measure of textural 

uniformity in the data. If the reflectivity along a horizon is nearly constant, it will exhibit high 

GLCM energy. 

Spectral magnitude: The magnitude of spectral components ranging from 20 Hz to 70 Hz, which 

is the effective bandwidth of the input seismic data. 

Specifically, the attributes used for the computation of seismic facies classification using some 

of the unsupervised machine learning methods were the relative acoustic impedance, envelope, 

sweetness, GLCM energy and spectral magnitudes at 25 Hz, 40 Hz and 55 Hz. 

All these different attributes have been generated on both the input seismic and the bandwidth 

extended versions to use them as input for unsupervised seismic facies classification using 

machine learning techniques, which are described in the next section. 
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Figure 8: Stratal slice 32 ms above the Sognefjord marker from the relative acoustic impedance attributes computed 

from (a) input seismic data, and (b) input seismic data after bandwidth extension. Notice the crisp definition of the 

faults highlighted areas in dashed purple outline in (b). 

Seismic facies classification using machine learning techniques on input 
seismic, and bandwidth extended seismic data 

We carry out seismic facies classification with the application of two unsupervised machine 

learning methods, namely self-organizing mapping (SOM), and generative topographic mapping 

(GTM). A comparison of the two versions reveals the superior spatial facies resolution as well 

as crisp definition of faults/fractures as seen on the bandwidth extended seismic data. 

We describe the details of this exercise, methods, and results in the following sections. 
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Machine learning uses mathematical operations to learn from the similarities and differences in 

the provided data, in order to make decisions or predictions. There are two broad families of 

machine learning algorithms. The first algorithm family includes dimensionality reduction 

algorithms such as PCA and ICA. When plotted against a 2D color bar, the interpreter may 

“see” clusters, but the algorithm output is a continuum of data in a lower dimensional space. The 

second, unsupervised classification algorithm family attempts to explicitly cluster the data into a 

finite number of groups that in some metric “best represent” the data provided. Before the 

analysis, there is no interpretation assigned to any given group; rather, “the data speak for 

themselves”. However, the choice of input attributes biases the clustering to features of 

interpretation interest. Biasing the training data to favor geologic features of interest (e.g., by 

more heavily weighting a bright-spot anomaly) also provides interpreter control of the output. 

We show the application of self-organizing mapping (SOM) and generative topographic 

mapping (GTM) on the Smeaheia data volume. 

Self-organizing mapping 

Self-organizing mapping (SOM) is a technique that generates a seismic facies map from 

multiple seismic attributes, again in an unsupervised manner. In contrast to k-means, 

SOM defines its initial cluster centroids in an N-dimensional attribute data space by 

least-squares fitting the data with a plane that best fits the data defined by the first two 

eigenvectors of the covariance matrix (Kohonen, 1982, 2001). This plane with centroids 

locked to it is then iteratively deformed into a 2D surface called a manifold that better fits 

the data. After convergence, the N-dimensional data are projected onto this 2D surface, 

which in turn are mapped against a 2D plane or “latent” (hidden) space defined by axes 

SOM-1 and SOM-2, onto which the interpreter either explicitly defines clusters by 

drawing polygons, or implicitly defines clusters by plotting the results against a 2D color 

bar. 

Figure 9 shows the equivalent stratal displays (within the Sognefjord formation) 

extracted from the SOM crossplot volume computed for the input and frequency-

balanced versions of the seismic data, using a 2D color bar. Some of the clusters seen 

on the display in Figure 9b are better defined than the ones shown in Figure 9a. 

A similar comparison of stratal slices from the SOM crossplot volume is shown in 

Figures 10 and 11 at levels within the Fensfjord and Krossfjord Formations, 

respectively, and at each level we see a superior distribution of the seismic facies 

corresponding to the different colours for the SOM seismic facies generated on the 

frequency-enhanced version. 
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Figure 9: Stratal slice at 80 ms below the Sognefjord marker (within Sognefjord Fm) extracted from the SOM cross-

plot volume computed on attributes generated on (a) input seismic data volume, and (b) bandwidth extended input 

seismic data volume. The two displays have been co-rendered with the respective multispectral energy ratio 

coherence attribute volumes. Better spatial resolution of the seismic facies is seen in (b) than in (a). Only the target 

area between the Vette and Øygarden faults was classified and has been shown. 
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Figure 10: Stratal slice at 136 ms below the Sognefjord marker (within Fensfjord Fm) extracted from the SOM cross-

plot volume computed on attributes generated on (a) input seismic data volume, and (b) bandwidth extended input 

seismic data volume. The two displays have been co-rendered with the respective multispectral energy ratio 

coherence attribute volumes. Better spatial resolution of the seismic facies is seen in (b) than in (a). Only the target 

area between the Vette and Øygarden faults was classified and has been shown. 
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Figure 11: Stratal slice at 228 ms below the Sognefjord marker (within Krossfjord Fm) extracted from the SOM cross-

plot volume computed on attributes generated on (a) input seismic data volume, and (b) bandwidth extended input 

seismic data volume. The two displays have been co-rendered with the respective multispectral energy ratio 

coherence attribute volumes. Better spatial resolution of the seismic facies is seen in (b) than in (a). Only the target 

area between the Vette and Øygarden faults was classified and has been shown. 

Generative topographic mapping 

The Kohonen self-organizing map described above, while the most popular unsupervised 

clustering technique, being easy to implement and computationally inexpensive, has limitations. 

There is no theoretical basis for selecting the training radius, neighborhood function and 

learning rate as these parameters are data dependent (Bishop et al., 1998; Roy, 2013). No cost 

function is defined that could be iteratively minimized and would indicate the convergence of the 

iterations during the training process. Finally, no probability density is defined that could yield a 

confidence measure in the final clustering results. Bishop et al. (1998) developed an alternative 

dimension reduction technique called a generative topographic mapping (GTM) algorithm that 

provides a probabilistic representation of the data vectors in latent space. 

The GTM method begins with an initial array of grid points arranged on a lower dimensional 

latent space. Each of the grid points are then nonlinearly mapped onto a similar dimensional 
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non-Euclidean curved surface as a corresponding vector (mk) embedded into different 

dimensional data space in GTM. Each data vector (xk) mapped into this space is modeled as a 

suite of Gaussian probability density functions centered on these reference vectors (mk). The 

components of the Gaussian model are then iteratively made to move toward the data vector 

that it best represents. Roy (2013) and Roy et al. (2014) describe the details of the method and 

demonstrate its application for mapping of seismic facies to the Veracruz Basin, Mexico. 

As it may have become apparent from the descriptions above, the SOM and GTM techniques 

project data from a higher dimensional space (8D when 8 attributes are used) to a lower 

dimensional space which may be a 2D plane or a 2D deformed surface. Once they are 

projected onto a lower dimensional space, the data can be clustered in that space, or 

interactively clustered with the use of polygons. 

Figure 12: Stratal slice at 80 ms below the Sognefjord marker (within Sognefjord Fm) extracted from the GTM cross-

plot volume computed on attributes generated on (a) input seismic data volume, and (b) bandwidth extended input 

seismic data volume. The two displays have been co-rendered with the respective multispectral energy ratio 

coherence attribute volumes. Better spatial resolution of the seismic facies is seen in (b) than in (a). Only the target 

area between the Vette and Øygarden faults was classified and has been shown. 
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Figure 13: Stratal slice at 136 ms below the Sognefjord marker (within Fensfjord Fm) extracted from the GTM cross-

plot volume computed on attributes generated on (a) input seismic data volume, and (b) bandwidth extended input 

seismic data volume. The two displays have been co-rendered with the respective multispectral energy ratio 

coherence attribute volumes. Better spatial resolution of the seismic facies is seen in (b) than in (a). Only the target 

area between the Vette and Øygarden faults was classified and has been shown. 
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Figure 14: Stratal slice at 228 ms below the Sognefjord marker (within Krossfjord Fm) extracted from the GTM cross-

plot volume computed on attributes generated on (a) input seismic data volume, and (b) bandwidth extended input 

seismic data volume. The two displays have been co-rendered with the respective multispectral energy ratio 

coherence attribute volumes. Better spatial resolution of the seismic facies is seen in (b) than in (a). Only the target 

area between the Vette and Øygarden faults was classified and has been shown. 

In Figures 12 to 14 we show the displays equivalent to those shown for SOM analysis, where 

some of the clusters can be interpreted with ease with less background clutter and confusion. 

In the comparison of the seismic facies displays generated for the original seismic data as well 

as the bandwidth extended version and shown above at different levels, we see almost no 

variation of facies carried out on the former, but a definite variation of seismic facies carried out 

on the latter from well 32/4-1 to the left to well 32/2-1 to the right. To ascertain such a variation, 

we picked up the available well data at the two wells, and carried out Bayesian facies 

classification (Grana, 2013). Figure 15a shows a cross-plot of porosity against gamma-ray well 

curves. The data points in blue come from well 32/4-1 and the yellow ones from well 32/2-1. 

Based on the cutoff values for porosity and gamma-ray, five coloured ellipses enclose clusters 

of points assigned based on Bayesian classification. When back-projected on the curves for the 

two wells, they highlight zones based on the colour of the cluster they represent. We notice that 

the red facies in well 32/4-1 appear as green in the same zone in well 32/2-1 in the Sognefjord, 
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Heather, Fensfjord and Krossfjord intervals, which suggests different facies in the two wells at 

these levels. This lends support to the facies variation we see after bandwidth extension of 

seismic data. 

Figure 15: (a) Cross-plot between gamma ray and porosity for the interval between the flattened Sognefjord marker 

and about 240 ms below for wells 32/4-1 and 32/2-1. (b) The data points in blue come from well 32/4-1 and the 

yellow ones from well 32/2-1. Five coloured ellipses enclose clusters of points assigned based on Bayesian 

classification. When back-projected on the curves for the two wells they highlight zones based on the colour of the 

cluster they represent. We notice that the red facies in well 32/4-1 is seen more as green in the same zone in well 

32/2-1 in the Sognefjord, Heather, Fensfjord and Krossfjord intervals. 

Conclusions 

We have found that bandwidth extension of the input seismic data when used for attribute 

generation and further used in some of the multi-attribute processes discussed in this paper can 

significantly aid in accurate interpretation of seismic facies. Results obtained for the 

unsupervised machine learning applications employing both the input seismic as well as its 

bandwidth extended version depict superior performance of the latter in terms of clarity of 

clusters as well as color variations within them. Such an observation seems to agree with the 

observation about variation in facies from the well to the left of the seismic volume to the well to 

the right. 

Applications of SOM and GTM techniques to the same data allowed us to assess their relative 

strengths as well as their suitability. We found that both GTM and SOM show more promising 

results, than with GTM having an edge over SOM in terms of the detailed distribution of seismic 

facies with better resolution and distinct definition of the geologic features seen on the displays. 
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Usually, seismic facies maps in the zones of interest are calibrated with the lithofacies 

information obtained from well cores and cuttings. As there is appreciable difference in 

resolution between the two types of data, it is advisable to enhance the resolution of seismic 

data by adopting a bandwidth extension workflow. Such a workflow can narrow down the 

resolution gap between the facies data types (seismic and geologic) as well as help perform a 

better correlation/calibration between the two. This is the motivation for the work described in 

this paper. 

Though the analysis is qualitative at present, it paves the way for more detailed work, as more 

well and other data become available. 
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