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barrels of oil spread over 8.5 years and reaching a recovery rate of 
about 54%. It was decommissioned in September of 2016.

The stratigraphy for the reservoir interval is shown in Table 1.
Figure 1b shows a segment of a seismic section with three 

markers overlaid. The Base of Cretaceous Unconformity (BCU) 
represents the separation of the syn-rift depositional sequence 
from the post-rift depositional sequence and covers large areas in 
the North Sea. It is easily identified on surface seismic data and 
well logs and is an important marker. The dashed black marker 
represents the base of the Hugin sandstone reservoir, which forms 
a combined structural and stratigraphic trap, with depths varying 
between 2750 to 3120 m. These sandstones are not preserved 
over the entire survey. The western side of the structure is heavily 
faulted and the communication across the faults is uncertain.

Our goal is to determine the facies distribution within the 
Hugin sandstone reservoir and develop a better understanding of 

Introduction
Located in block 15/9 in the southern Norwegian North Sea on 
the continental shelf, in 80 m of water, the Volve oilfield is situ-
ated approximately 200 km west of Stavanger (Figure 1a). It was 
discovered in 1993 when exploration well 15/9-19SR was drilled 
and found oil in the Middle Jurassic Hugin sandstone formation. 
The objective for 15/9-19SR was to test the hydrocarbon potential 
of the Paleocene age Heimdal Formation which forms the main 
reservoir in the adjoining Sleipner Øst area. The well showed the 
Heimdal to be dry but encountered oil in the Hugin sandstone. 
Initially estimated oil and gas reserves stood at 78.6 million bar-
rels of oil and 1.5 billion cubic metres of gas, but with the drilling 
of observation well 15/9-F11-A, the oil reserves were increased 
by 8.8 to 9.4 million barrels. The production from the oil field 
started in February 2008 and reached a plateau of 56,000 barrels 
per day of 29.1 oAPI oil. The field delivered a total of 63 million 

Summary
Because they allow us to integrate the information content contained in multiple seismic attribute volumes, machine 
learning techniques hold significant promise in the identification and delineation of heterogeneous 3D seismic facies. 
However, considerable care must be taken in choosing not only the appropriate, but also in their scaling. Sometimes such 
exercises are carried out mechanically, resulting in compromised interpretations and discouraging results. We examine 
some of the more well-established unsupervised machine learning techniques such as principal component analysis 
(PCA) and k

means
 clustering, as well as some less common clustering techniques like independent component analysis 

(ICA), self-organizing mapping (SOM), and generative topographic mapping (GTM) as applied to a seismic data volume 
from the southern Norwegian North Sea. We find that the machine learning methods can provide increased vertical 
and spatial resolution. However, machine learning is also good at enhancing noise and artifacts. For this reason, the 
interpreter needs to ensure the data are adequately conditioned, the assumptions on which some of the techniques being 
applied are based are met, and finally, the most appropriate technique among those discussed in this paper is utilized.

Norwegian North Sea with unsupervised machine 
learning applications for facies classification
Satinder Chopra1*, Thang Ha2, Kurt, J. Marfurt2 and Ritesh Kumar Sharma1.

Seismic characterization of the Middle Jurassic 
Hugin sandstone reservoir in the southern 

System Group Formation Lithology

Jurassic Viking Draupne Fm. Claystone, minor Limestone

Heather Fm. Claystone

Vestland Hugin Fm. Sandstone, minor Claystone and Limestone (Reservoir)

Sleipner Fm. Sandstone-Claystone intercalation. Minor Coal

Table 1 Stratigraphic sequence for the 
reservoir level of the Volve field area. 
(Modified from Sen and Shankar, 2019)
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at the peak frequency, from which the average magnitude of 
the entire spectrum of the data is subtracted, is called ‘peak 
magnitude above average’, and can also be generated. It 
emphasizes the anomalous (typically tuning) response of the 
data and thus is helpful for at-a-glance interpretation.

6.  Spectral magnitude is the magnitude of each spectral com-
ponent ranging within the seismic bandwidth of the data at a
specific frequency increment.

The choice of the attributes used in unsupervised learning relies 
on their data distribution as well as any correlation that might 
exist between them. The selection of the input attributes can be 
done in different ways including geologic insight, quantitative 
correlation with geologic features of interest, and previous 
successes obtained for similar objectives in other basins. In this 
example, we will use our geologic insight to choose the candidate 
attributes. Details of how this selection was made is not the focus 
of this paper and will be discussed in another publication.

Seismic facies classification using machine 
learning techniques
Machine learning uses mathematical operations to learn from 
the similarities and differences in the provided data and make 
predictions.  Besides the supervised and deep learning machine 
learning techniques (Figure 2), there are two broad families of unsu-
pervised machine learning algorithms. The first algorithm family 
includes dimensionality reduction algorithms such as PCA and ICA. 
When plotted against a 2D colour bar, the interpreter may be able to 
identify clusters, but the algorithm output is a continuum of data in 
a lower dimensional space. The second, unsupervised classification 
algorithm family attempts to explicitly cluster the data into a finite 
number of groups that in some metric ‘best represent’ the data 
provided. kmeans clustering is one such process. Before the analysis, 
there is no interpretation assigned to any given group; rather, ‘the 
data speak for themselves’. However, the choice of input attributes 
biases the clustering to features of interpretation interest. Biasing 
the training data to favour geologic features of interest (e.g., by 
providing a disproportionate number of voxels exhibiting a bright-
spot anomaly) also provides interpreter control of the output. We 
also show the application of self-organizing mapping (SOM) and 
generative topographic mapping (GTM) to the Volve data volume.

the techniques that may be employed for doing so. Because the 
porosity of sandstone influences the impedance, the ideal work-
flow is to conduct prestack simultaneous impedance inversion 
of the seismic data to obtain P-impedance and VP/VS ratio. Even 
with such estimates, it is useful to augment such ‘quantitative’ 
attributes based on the well-established correlation of the seismic 
amplitude response to changes in reflectivity, with ‘softer’ meas-
ures provided by complex trace analysis, spectral decomposition, 
and texture attributes that are sensitive to not only the vertical 
but also the lateral variation in the reflectivity. Furthermore, for 
reasons of insufficient S-wave logs, or simply for cost and time 
constraints, in many cases prestack inversion is not performed. 
Therefore, instead of the absolute P-impedance from prestack 
simultaneous impedance inversion, we generated relative acous-
tic impedance and used that in the attribute mix instead. Thus, for 
the delineation of the Middle Jurassic Hugin sandstone facies, 
the eight attribute volumes used for this exercise were relative 
acoustic impedance, instantaneous envelope, sweetness, GLCM 
(grey-level co-occurrence matrices) energy, peak magnitude, and 
spectral magnitudes at 35 Hz, 40 Hz and 45 Hz.
1.  Relative acoustic impedance is computed by continuous

integration of the original seismic trace with the subsequent
application of low-cut filter. The impedance transformation
of seismic amplitudes enables the transition from reflection
interface to interval properties of the data, without the
requirement of a low-frequency model.

2.  Instantaneous envelope is a measure of the instantaneous
energy of the analytic seismic trace, independent of phase,
and provides information on intensity of reflections.

3.  Sweetness is a ‘meta-attribute’ or one computed from
others, which in this case is the ratio of the envelope to the
square root of the instantaneous frequency. A clean sand
embedded in a shale will exhibit high envelope and lower
instantaneous frequency, and thus higher sweetness, than the
surrounding shale-on-shale reflections.

4.  GLCM or grey-level co-occurrence matrix energy is a
measure of textural uniformity in the data. If the reflectivity
along a horizon is nearly constant, it will exhibit high
GLCM energy.

5.  Peak magnitude represents the spectral magnitude of the
seismic data at the peak frequency. Similarly, the magnitude

Figure 1 Segment of a section from the seismic volume with three markers overlaid. The ‘Base of Hugin sandstone’ shown with the black dashed line represents the base 
of the Middle Jurassic sandstones, which form the reservoir in the Volve Field. These sandstones are not present over the full survey. The inset shows an index map of the 
location of Volve oilfield in the southern Norwegian North Sea, generated using Google Earth. The approximate shape of the field is shown in the inset (not drawn to scale).
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Many of our attributes are coupled through the underlying 
geology, such that a fault may give rise to lateral changes in 
waveform, dip, peak frequency, and amplitude. Such ‘redundant’ 
images provide increased confidence in the existence and extent 
of a given geologic feature. Less desirably, many of our attributes 
are coupled mathematically, such as alternative measures of 
coherence (Barnes, 2007) or of a suite of closely spaced spectral 
components. The amount of attribute redundancy is measured by 
the covariance matrix. The element Cmn of an N-by-N covariance 
matrix is then simply the crosscorrelation between the mth and 
nth scaled attribute over the volume of interest containing R 
length-N data vectors. By convention, the first step is to order the 
eigenvalues from the largest to the smallest. The first eigenvector 
is a linear combination of scaled attributes that best represents 
the variance in N data volumes. Commonly, the jth eigenvalue 
λj is normalized by the sum of all the eigenvalues such that  
0 ≤  ≤ 1. If we wish to represent the N attribute volumes by a 
smaller subset of linear attribute combinations, we choose a cut-
off value, say a fraction ε of the variation expressed by the first 
eigenvalue, and ignore all eigenvectors and principal components 
j where

 (1a)

or alternatively

 (1b)

To analyse N attribute volumes, each voxel is represented by a 
length-N attribute vector. The projection of (crosscorrelation) the 
length-N attribute vector against the length-N first eigenvector, v1 

The objective of this exercise is to enhance our understanding 
about the application of unsupervised machine learning (ML) 
techniques for facies classification including principal component 
analysis (PCA), independent component analysis (ICA), kmeans 
clustering, self organized mapping (SOM), and generative topo-
graphic mapping (GTM). Our goal is to understand the sensitivity 
to data conditioning and its impact on the eventual crossplotting 
analysis, the assumptions for the application of some of the 
techniques, and what we need to do should such assumptions not 
be satisfied. We provide a visual comparative performance of the 
ML techniques for each of these issues.

Principal component analysis
Principal component analysis (PCA) is perhaps the most com-
monly used dimensionality reduction tool. If the input data 
do not exhibit a Gaussian distribution, the resulting principal 
components will also be skewed, thus reducing the ‘resolution’ of 
the colour near the peak of the distribution during corendering or 
crossplotting (Ha et al., 2021).

Figure 2 Classification of machine learning techniques.

Figure 3 (a) Attributes selected for use in 
machine learning processes and their amplitude 
distributions. (b) Crossplots of PCA projections 
1, 2, and 3 against one another computed after 
z-score transformation. The spikes seen in the 
data prevent the visibility of the cluster points on 
the crossplots.
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On closer examination we realize that this is due to a spike in one 
of the attributes that prevents the cluster points from showing up 
on the crossplot.

To address this issue, we removed all data vectors containing 
a value close to the (user-defined) spike value, and then regen-
erated the displays shown in Figure 3 as Figure 4. The spike 
has gone away completely, and the amplitude level has come 
down (Figure 4a). Also, the amplitude levels that were dwarfed 
compared with the spike amplitude have now been enhanced. 
More importantly, the crossplots now exhibit cluster points as 
expected (Figure 4b).

Figure 5 shows stratal slices 64 ms above the base of the 
Hugin sandstone from the RGB (red, green, and blue) corendered 
principal components (PC1, PC2 and PC3), generated before 
and after preconditioning for removal of the histogram spikes. 
This level has been chosen as it represents the optimum surface 
representing Hugin sandstone. Note the increased colour range 
and how constant colour patches in Figure 5a are seen with 
greater lateral detail in Figure 5b, assuming that maximum vari-
ance along the stratal slice is geologically meaningful. A similar 
observation can be made for the equivalent RGB corendered 
displays (Figure 6) made for the independent components to be 
discussed in the next section. In Figure 7 we display equivalent 
stratal displays from the input seismic data volume as well as the 
attributes used in the computation of the principal component 
analysis. This has been done to help the interpreters gauge how 
the outcomes of the various algorithms differ from and add 
information to the raw data.

Normalization of seismic attributes
The first step in multi-attribute analysis is to subtract the mean 
of each attribute from the corresponding attribute volume. If 

results in a crosscorrelation coefficient called the first principal 
component of the data set (PC1), which captures the largest 
amount of data variance. Because the first eigenvector v1 best 
represents the variance of the data analysed (e.g., between two 
picked horizons) as a whole, PC1 will map out the major features 
in the data. Eigenvector v2 is paired with the second-highest 
eigenvalue, . When crosscorrelated with the data vectors, it 
provides the second principal component. PC2. v1 and v2 define 
a plane in N-dimensional attribute space that best represents (in 
a least-squares sense) the N attribute volumes. Similarly, the 
third eigenvector v3 will be perpendicular to the plane defined by 
v1 and v2. In our experimentation we have found the first three 
principal components can represent the vast majority of the data 
(~ 75 – 90%). The display of PC4 and beyond are increasingly 
noisy and provide less geological information. Besides, we can 
only effectively corender up to three components on a display. 
Therefore, our analysis will be based on the first three principal 
components.

In Figure 3a we show the amplitude distributions of the eight 
attributes used in this exercise. Interestingly, barring the relative 
acoustic impedance, all the attributes show skewed distributions. 
The amplitude distribution for relative acoustic impedance 
exhibits a spike. Such spikes can originate from the dead or 
muted zones. Sometimes, they are also found to originate in the 
inversion process and are seen in the computed porosity attribute 
as clipped values corresponding to zero or 100%. It is critical to 
exclude dead traces and mute zones from the analysis, and while 
many attributes have the same mute zones as the original data, 
some attributes such as relative acoustic impedance may need to 
increase the mute zones to minimize edge effects. In Figure 3b 
we show the crossplots for PCA projection 1, 2, and 3 against 
one another, where to our dismay we notice that they are blank. 

Figure 4 Analysis of datasets shown in Figure 1 
after conditioning (despiking, etc.) (b) Crossplots 
of PCA Projection 1, 2, and 3 against one another 
computed after z-score transformation. After 
removal of spikes in the data the cluster points 
on the crossplots become visible.
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and cn) instead of two in the z-score transformation (an and 
bn), some constraints need to be defined so that the logarithmic 
transformation can reshape the input data distribution close to a 
Gaussian distribution.

Ha et al. (2021) reshape the data distribution curve in 
terms of three anchor points: the value xp at the pth (e.g., 2.5%) 
percentile, the value x1-p at the (1-p)

 th (e.g., 97.5%) percentile, 
and the mode, xmode, representing the peak of the distribution. The 
objective of this reshaping process is that after the logarithmic 
transformation, the transformed left and right anchor points are 
symmetric about zero, with the peak of the transformed distribu-
tion located at zero. When this process was implemented, they 
found that a slightly skewed distribution was obtained instead of 
a symmetric one. In reshaping, the logarithmic transformation 
moves the peak of the transformed distribution away from the 
peak of the original distribution. To avoid this, Ha et al. (2021) 
adopt an iterative procedure for computation of transformation 
parameters by recomputing the peak anchor point of the original 
distribution, xmode from the peak of the transformed distribution 
at every iteration. For ensuring convergence of the process to 
the peak, rather than hovering around it or get close to it, the 
average peak of all iterations is computed, after which a linear 
scale factor is also computed to shift the mean of the reshaped 
distribution to zero.

We illustrate the adoption of the logarithmic transformation 
in our analysis of the input attributes in Figure 8, where equiv-
alent plots are displayed to those shown in Figure 4. Notice the 
distributions more closely approximate to a Gaussian for each 
of the input attributes (Figure 8a), and the greater spread of the 
cluster points on the principal component projection crossplots 
(Figure 8b).

As in Figures 5 and 6, we show the stratal slices, extracted 
from RGB corendered principal components using the traditional 
z-score normalization (Figure 9a) and the logarithmic normaliza-
tion (Figure 9b). Greater colour variation is seen on the display

the attributes have radically different units of measure, such as 
frequency measured in Hz, envelope measured in mV, and coher-
ence without dimension, a z-score normalization is required, 
where the difference of the attribute and its mean is divided by 
the standard deviation. While the z-score transformation is a 
widely used normalization scheme, it assumes that the input data 
exhibit a distribution close to a normal or Gaussian distribution. 
In actual practice, many of the seismic attributes exhibit skewed, 
peaked, or flattened distributions (Figure 3a). The simple z-score 
normalization does not compensate for skewness or kurtosis of 
the input distribution.

To address this issue, we scale each length-N attribute vectors 
x to obtain scaled attribute vectors y using

(2)

where for attribute n a z-score normalization  is called the 

shift factor, and  is the scale factor. For Gaussian data μn is  

the mean, and σn is the standard deviation. The z-score transfor-
mation has only two parameters, the mean μn and the standard 
deviation σn and is a linear transformation.

For non-Gaussian distributions we adopt the algorithm 
described by Ha et al. (2021), who demonstrated the value of 
(when appropriate) a logarithmic transformation that can help to 
overcome the shortcomings of a z-score transformation and recast 
equation (2) into

 (3)

where cn is a scale factor in the logarithmic domain. Such a 
transformation is equivalent to first linearly transforming the 
input, followed by the application of a logarithmic function. 
Even though this transformation has three parameters (an, bn, 

Figure 5 Stratal slice from RGB corendered 
principal components (PC1, PC2 and PC3) 
computed using z-score normalization of the 
input seismic attributes, (a) without, and (b) with 
preconditioning. Notice the display shows more 
colour variation (and hence more details) after 
preconditioning.

Figure 6 Stratal slice from an RGB corendered 
independent components (IC1, IC2 and IC3) 
computed using z-score normalization of the 
input seismic attributes, (a) without, and (b) with 
preconditioning. Notice the display shows more 
colour variation after preconditioning.
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diapir, karst collapse, or gas chimney, whose seismic expression 
is quite different from the surrounding facies, then we want 
to preserve those strong differences by using a simple z-score 
transformation.

Independent component analysis
Independent component analysis (ICA) is an elegant machine 
learning technique that separates multivariate data into inde-
pendent components, without the requirement of a Gaussian 

in Figure 9b, which we interpret as exhibiting more lateral 
variability and is assumed as geologically meaningful.

When we non-linearly transform the data through the 
logarithmic transformation, the data are stretched near the peak 
and squeezed near the ‘tail’ of the distribution. If the objective 
is to define subtle features within a reservoir that exhibit a 
seismic expression similar to the neighbouring layers, we will 
obtain better colour resolution using the logarithm scaling. 
However, if the objective is to define features such as a salt 

Figure 8 Analysis of datasets after conditioning 
(despiking, etc.) and logarithmic transformation. 
(b) Crossplots of PCA Projection 1, 2, and 3 
against one another computed after logarithmic 
transformation. They better utilize the full range 
of 2D or 3D colour table, thereby delineating 
smaller geologic details.

Figure 7 Stratal slices 64 ms above the Base 
of Hugin sandstone marker extracted from the 
(a) seismic, (b) relative acoustic impedance, 
(c) amplitude envelope, (d) sweetness, (e) 
GLCM energy, (f) peak magnitude, and spectral 
magnitude at (g) 35 Hz, (h) 40 Hz, and (i) 45 Hz 
volumes.
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equation, and solved using higher order statistics. Figure 10 
illustrates the differences between the principal and independent 
component analysis. We demonstrate its application to the Volve 
multiattribute seismic data using both the z-score and logarithmic 
normalization (Figure 11), wherein the resultant independent 
components exhibit better resolution and separation of the 
geologic features with the latter process.

k-means clustering
k-means clustering is one of the simplest clustering algorithms
and is available in most seismic interpretation software. kmeans

organizes a given distribution of length-N attribute vectors at R
voxels, xr, where r = 1, 2, …R, into a desired number of k clusters. 
The clustering process begins by assigning at random k centroids
which can serve as centres of the groups we wish to form, where
each centroid defines one cluster. Next, the distance between each 
data point and the centroid of that cluster is calculated. A point
may be within a cluster if it is closer to the centroid in that cluster
than any other centroid. As some reorganization of the points in
different clusters has taken place, the centroids are recalculated
for each cluster. These two steps are carried out iteratively, until
there is no more shifting of the centroids, and the process has
converged. The calculation of distance between the centroid
and the data points referred to above is the traditional Euclidean
distance, which assumes there is no correlation between the
classification variables. If there is no correlation, then the classi-
fication variables would exhibit a spherical shape of the clusters
in crossplot space. In many cases, this is not found to be true,
as the classification variables exhibit clusters that are elliptical
in shape, and hence are correlated. In such cases, the traditional
k-means clustering method might not achieve convergence and
hence fail. To avoid this problem, we measure distance in the
orthogonal principal component space rather than use Euclidean
distance computed in the original non-orthogonal attribute space.
We find that k-means clustering method using distances in the

distribution for data going into the analysis. The other differenc-
es between ICA and PCA are that the independent components 
are not orthogonal, and their order is not defined, in that the 
first, second and third ICAs are ordered by visual examination, 
and are not mathematically ordered in the process as in PCA 
(Honorio et al., 2014; Lubo-Robles, 2018; Chopra et al., 2018).

Given a combination of different seismic attributes as input 
data, ICA attempts to find the ‘mixer’ that acts on several inde-
pendent components, which is mathematically cast as a matrix 

Figure 9 Stratal slice from an RGB corendered 
principal components (PC1, PC2 and PC3) 
computed using (a) z-score, and (b) logarithmic 
normalization of the input seismic attributes.

Figure 10 Differences between Principal Component Analysis (PCA) and 
Independent Component Analysis (ICA). The normalized attributes a1 and a2 
(scaled by their means and standard deviations) are shown on the two axes. 
The first eigenvector v1 is a line that least-squares fits the data cloud and best 
represents the variance of the data. PC1 is a projection of each data point onto v1. 
The second eigenvector v2 is perpendicular to v1 and for two dimensions these 
two eigenvectors best represent the data. In contrast, the independent components 
IC1 and IC2 are latent variables whose order is undefined, and they are not 
orthogonal to each other (Hyvärinen and Oja, 2000). To compute the independent 
components, each data point is projected onto the whitened eigenvectors v1 and 
v2, and then projected onto the unmixing matrix W. (After Lubo-Robles, 2018)

Figure 11 Stratal slice from an RGB corendered 
independent components (IC1, IC2 and IC3) 
computed using (a) z-score, and (b) logarithmic 
normalization of the input seismic attributes.
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principal component space correctly classifies nonspherical and 
nonhomogeneous clusters.

Suppose eight input attributes are used for kmeans clustering 
into six output clusters. When these six clusters are plotted 
against a simple rainbow colour bar, they may not show how the 
clusters are related to one another. Explicitly, does the red cluster 
lie next to the orange cluster or the blue cluster in N-dimensional 
attribute space? An alternative way is to project the cluster 
centres onto the three principal axes, yielding , , and 

 as outputs, which can then be integrated/corendered using 
RGB. Doing this will enable clusters that are closer together to 
be displayed with similar colours, while clusters that are far apart 
will be displayed with contrasting colours. This strategy reduces 
the need to estimate the number of clusters, because redundant 
clusters will now have similar colours.

In Figure 12 we show a stratal slice comparison for the 
z-score and logarithmic normalization for kmeans clustering using 
the new distance metric generated with eight clusters. We see a 
better distribution of coloured patches on the display that used 
logarithmic normalization (as seen in the highlighted areas of 
the display), which are a possible representation of the different 
facies in the data at that level.

Self-organizing maps
Like kmeans, self-organizing mapping (SOM) is a technique that 
generates a seismic facies map from multiple seismic attributes, 
again in an unsupervised manner. In contrast to kmeans, SOM 
defines its initial cluster centroids in an N-dimensional attribute 
data space and uses the first two eigenvectors of the covariance 
matrix to least-squares fit the data with a plane (Kohonen, 1982, 

2001). Grid prototype vectors (also called neurons) defined in 
this plane, are attracted to data out of the plane, deforming it 
into a 2D surface called a manifold that better fits the data. After 
convergence, the N-dimensional data are projected onto this 
2D surface, and are turn mapped against a 2D plane or ‘latent’ 
(hidden) space defined by axes SOM-1 and SOM-2, in which the 
interpreter either explicitly defines clusters by drawing polygons, 
or implicitly defines clusters by plotting the results against a 2D 
colour bar.

Figure 13 shows the equivalent stratal display to the ones 
shown earlier, extracted from the crossplot generated between the 
SOM-1 and SOM-2 volumes using a 2D colour bar shown along-
side. Figure 13a shows the display for the SOM computation 
carried out when the input attributes were normalized using the 
z-score approach, and Figure 13b displays the equivalent display 
when the input attributes were normalized using the logarithmic 
transformation. The clusters seen on the display in Figure 13b 
are better defined in terms of more colour separation and distinct 
definition than the ones seen in Figure 13a as well as those shown 
earlier from PCA and ICA analysis or the kmeans clustering display.

Generative topographic mapping
Although popular as an unsupervised clustering technique for its 
straightforward implementation and its low computation cost, 
the Kohonen self-organizing map has limitations. There is no 
theoretical basis for selecting the training radius, neighbourhood 
function and learning rate as these parameters are data dependent 
(Bishop et al., 1998; Roy, 2013). No cost function is defined that 
could be iteratively minimized and would indicate the conver-
gence of the iterations during the training process, and finally 

Figure 13 Equivalent stratal slices from SOM1 vs SOM2 crossplot volume, where SOM projections were computed using (a) z-score, (b) logarithmic normalization of the input 
seismic attributes. The white pixels are clipped data corresponding to outliers, which was necessary to enhancing the colour contrast of the greater part of the image. The 
clusters seen on the logarithmic normalization exhibit better spatial resolution than the equivalent display where z-score normalization was used.

Figure 12 Stratal slice from an RGB corendered 
kmeans clustering components (1, 2 and 3) 
computed using (a) z-score, and (b) logarithmic 
normalization of the input seismic attributes.
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mutes and no-permit zones need to be excluded from the analysis. 
We find that when our goal is to differentiate subtle features in 
the data that both limiting the zone of analysis to the geologic 
formation of interest, to limit the number of facies analysed, and 
logarithmic scaling of the data to stretch the attribute response 
provides the best delineation (colour resolution) of the geologic 
features. In contrast, if our goal is to delineate single seismic 
facies (e.g., salt diapirs exhibiting anomalously low coherence, 
low RMS amplitude, high GLCM entropy) that is represented by 
the tails of the data distribution, then we should apply a simple 
z-score scaling to preserve the tails.

Application of PCA, ICA, kmeans, SOM and GTM techniques
to the same data allowed us to assess their relative strengths. 
We found that principal component analysis provided more 
convincing results (greater differentiation of facies) than kmeans 

clustering. ICA results look better than PCA results in terms of 
better colour detail and separation of the geologic features. Both 
GTM and SOM show promising results, with GTM having an 
edge over SOM in terms of the detailed distribution of facies and 
distinct definition.
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